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ABSTRACT
On the one hand, fully flexible demand-responsive feeder services efficiently tailor
their service to passengers’ needs. Traditional services, on the other hand, offer pre-
dictability and easier cost control. This paper considers a semi-flexible feeder service
that combines positive characteristics of both traditional and fully flexible services.
There are two types of bus stops in this service. Mandatory bus stops have a max-
imum allowable headway for bus departures. Optional stops are only visited when
there is demand for transportation nearby. When new passenger requests arrive, the
performance of this feeder service is optimised in real-time. A metaheuristic with
two phases is developed to optimise the service. The dynamic optimization method
is compared to a model that optimises the service when all requests are known be-
forehand. The results show that the dynamic method has an average gap of 6.5%
with respect to the static model, and an average acceptance rate of 95.1%. A case
study in the city of Antwerp shows that, when compared to existing transit options
in the region, this feeder service can increase the service quality by 31.6% when
enough resources are available.

KEYWORDS
transportation ; public bus transport ; feeder service ; demand-responsive
transportation ; meta-heuristics ; real-time optimization

1. Introduction

Traditional public bus services are services that have a fixed route and timetable,
which are determined before the service is implemented, and never or rarely change.
These transportation services take demand for transportation into account by deter-
mining both routes and timetables based on historical demand data. Historical data
in a conventional bus service provides a long-term and collective relationship between
demand and supply (Iliopoulou et al., 2019; Schöbel, 2012). However, individual user
requests for transportation made in a short-term scale are generally not taken into
account in the planning of either the routes or the timetables of the buses in such a
service. This can lead to inefficiencies in the operation of such services when demand
for transportation is either low or has a large variance (Li and Quadrifoglio, 2010).

Consequently, Demand-Responsive Transportation Services (DRTS) emerged to deal
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with the shortcoming of traditional bus services. DRTS are bus services that do not
operate completely fixed routes and timetables. This flexible approach to public bus
planning takes into account the individual demand for transportation, but it requires
additional information about potential passengers. Information such as the origin,
destination and preferred time of arrival and departure of individual passengers is
important for the planning and operation of such services. This information can,
for example, be obtained by asking passengers to make an explicit request for
transportation using a mobile device or website. Although the collection of this data
can be time-consuming and/or costly, the benefits are that DRTS take individual
and short-term demand into account and adapt bus routes and/or timetables in
much shorter time frames. This, in turn, leads to higher service quality. However,
having a service where nothing is fixed, i.e., fully flexible DRTS, makes the service
unpredictable, not easy to use for most people and less cost-efficient. The individual
demand for transportation that is not explicitly requested or predicted cannot be met
in fully flexible DRTS. Furthermore, recent findings suggest that high frequency bus
services with fixed bus stops, i.e., conventional transportation services, can be used
to guide urban planning towards more public-transit-friendly city designs (Knowles
et al., 2020; Ibraeva et al., 2020). For these reasons, semi-flexible DRTS, i.e., DRTS
where the planning is partially fixed, can offer a middle-ground between fully flexible
DRTS and conventional services.

In this paper we work with feeder services. In these services, all passengers have the
same destination but different origins. Passengers from typically sparsely populated
areas are transported to areas with a high demand for transportation or to trans-
portation hubs, where they can continue their journey. Feeder services can be an
answer to the problem of overfull parking lots at transportation hubs and congestion
in the surrounding area. These services can greatly benefit from both the flexibility
that DRTS provides and the predictability and cost efficiency of conventional services.
Therefore, the feeder service discussed in this paper is a semi-flexible DRTS.

More specifically, the semi-flexible DRTS studied in this paper is a variant of the
Demand-Responsive Feeder System (DRFS), which has been previously introduced
by Galarza Montenegro et al. (2021). This variant is called the Feeder Service with
Mandatory Stops (FSMS). It provides service to two types of bus stops: mandatory
stops and clustered optional stops. The mandatory stops are visited by each bus in
the line. In the variant considered in this paper, these mandatory stops also have
a maximum allowable headway, which means that a bus visits these stops within a
specific time interval. A maximum headway of 20 minutes, for example, means that
passengers will never have to wait more than 20 minutes at a mandatory stop. The
maximum headway, or the length of this time interval, is a parameter chosen by the
service provider. A bus only visits the optional stops when a potential passenger within
walking distance requests transportation. Optional bus stops are introduced because
for some passengers, such as children, disabled, or senior passengers, it is inconvenient
to reach one of the limited number of bus stops that are typically present in a con-
ventional service (Mistretta et al., 2009). Potential passengers make a transportation
request to the transportation hub by stating their location and the time they wish to
depart or arrive at the hub. In practice, this can be done through a website or a phone
application. Passengers are then assigned to a departure bus stop, to which they must
walk to. This means that the bus routes and schedules are not completely fixed and
can be changed based on demand. The mandatory stops provide some predictability
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and act as a safety net for ‘passengers without reservations’, as these passengers
can still board a bus at the mandatory stops. As previously mentioned, the use of
fixed transit stops is a driving factor in transit-oriented urban development (Knowles
et al., 2020; Ibraeva et al., 2020), which makes the use of the mandatory stops more
attractive as well. Furthermore, passengers at mandatory stops do not have to wait
more than a certain amount of time because at least one bus departs from these
stops within a certain time interval. Buses that arrive at the hub are expected to
return to be reused for subsequent trips, which means that fewer buses are required
to meet demand. It is found that attributes such as comfort and arrival time at the
destination, but most importantly the reliability of a service, are highly valued by pas-
sengers (Beirão and Sarsfield Cabral, 2007). These attributes are present in the FSMS.

A static variant of the FSMS has been previously introduced in Galarza Montenegro
et al. (2022b), in which the FSMS was optimised under the assumption that all
requests are known beforehand. The main contribution of this paper is the design of
an efficient dynamic optimization heuristic that optimises the FSMS, in a real-time
manner, whenever new requests are received. We denote this variant of the FSMS
as the dynamic FSMS (DFSMS). We assume that passenger requests are partially
or completely unknown before the start of operation. Therefore, the service needs to
adapt its planning whenever new requests are received, while still respecting several
constraints of the service. The dynamic nature of the DFSMS makes optimization
much more complex and thus requires more research. In order to optimise the
performance of the service, a heuristic with an insertion phase and an improvement
phase is developed. The insertion phase consists of an algorithm that aims to insert
as many passenger requests into the solution as possible. The improvement phase
consists of a greedy randomised algorithm that constructs different solutions based
on randomised construction parameters. When compared to a static model of the
problem, results suggest that the heuristic performs well in most cases, reaching a
service quality similar to the static system, for which the performance is easier to
optimise.

In the next section, a literature review on public transport feeder services is presented.
In Section 3, we present a detailed description of the DFSMS. Section 4 explains the
heuristic that is developed to optimise the performance of the DFSMS. Section 5 is an
explanation of the experimental set-up. In Section 6, the results for several experiments
are presented and discussed. The last section concludes the paper and discusses plans
for future research.

2. Literature Review

The Feeder Service with Mandatory Stops (FSMS) has been previously presented
in Galarza Montenegro et al. (2022b). Unlike this paper, Galarza Montenegro
et al. (2022b) optimise the service with the assumption that all requests are known
beforehand. This allows the static optimization algorithm to consider more feasible
options and essentially find solutions with a better objective function value compared
to a real-time optimization model. The static FSMS is an extension of the Demand-
Responsive Feeder Service (DRFS) presented in Galarza Montenegro et al. (2021). In
the DRFS, a fleet of buses transports passengers from a suburban area to an area with
high demand for transportation, such as a train station or a city. The DRFS accepts
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passenger requests until a certain deadline before dispatching the first bus. Each
request specifies the passenger’s current location as well as the desired arrival time at
the destination. There are two different bus stops. Each bus always visits mandatory
stops, while optional stops are visited if there is a demand for transportation nearby.
The DRFS is optimised with the use of a Large Neighbourhood Search (LNS) heuristic
in Galarza Montenegro et al. (2021). With the exact optimization methods provided
by Galarza Montenegro et al. (2022a), optimal solutions for fourteen benchmark
instances were obtained. It was then concluded that the LNS heuristic developed in
Galarza Montenegro et al. (2021) yields high quality solutions with low optimization
gaps for these benchmark instances. The following are the main differences between
the FSMS (Galarza Montenegro et al., 2022b) and the DRFS (Galarza Montenegro
et al., 2021): the service now needs to guarantee that a bus departs from each manda-
tory stop within a certain time interval, the return trip of the buses is now explicitly
considered, and passengers can now state a desired departure time as well. These addi-
tions significantly complicate service optimization while also improving service quality.

The DFSMS differs from the FSMS (Galarza Montenegro et al., 2022b) by optimizing
the service in real-time. Whenever new requests are received, the planning of the
service is updated, taking the new information into account. Consequently, the service
must be optimised several times throughout the planning horizon. This makes the
optimization much more complex, since there are additional restrictions, related
to the dynamic nature of the problem, that need to be respected. In the DFSMS,
passengers are notified when their request is accepted or rejected. The time before
passengers receive a response must not be too long, which imposes an additional
constraint on the model. Furthermore, when requests are accepted, passengers are
notified about a promised pickup time window and a promised departure stop. This
imposes two additional constraints on the model: these passengers must be picked up
at certain stop and within a certain time window.

Vansteenwegen et al. (2022) present a recent and extensive survey and categorise
Demand-Responsive Transportation Services (DRTS) into different groups. The
authors classify DRTS with three different dimensions in mind: level of flexibility,
level of responsiveness and a distinction between many-to-many and many-to-one
services. The latter refers to the number of origins or destinations passengers
can have. Many-to-many services serve passengers that have distinct origins and
destinations. Many-to-one services or feeder services serve passengers that have a
common departure or destination. An example of a many-to-many service is the
service introduced by Melis and Sörensen (2021), i.e., the On-Demand Bus Routing
Problem (ODBRP). The ODBRP starts with a given fleet of buses with fixed capacity,
a set of bus stops and a set of requests. Each request specifies a time frame for the
transportation and a list of nearby bus stops for both departure and arrival. The
algorithm determines the routing of the buses as well as the assignment of stops to
requests. The authors optimise total user ride time, which is the time passengers
spend on the bus, using an LNS algorithm. Furthermore, Melis and Sörensen (2021)
show that bus stop assignment increases routing flexibility and efficiency because
passenger pickup and drop-off can be grouped at bus stops to avoid extra stops
along the route. An example of a many-to-one service is the service studied in Dou
and Meng (2019). The authors study a stop-based feeder bus service that transports
passengers from a low demand area to a transportation hub, namely to a bus and/or
train terminal. The goal of this service is to bring passengers, who have different origin

4



 

3 

Fully flexible  

DRTS 

 

Semi-flexible 

DRTS 

Route and/or timetable 

are (partially) fixed 

Examples: FSMS, DFSMS, 

MAST, DAS, CB 

Demand-Responsive Transportation Services (DRTS) 

Traditional  

Transport Services 

(TTS) 

 
Route and timetable are 

fixed 

Examples: common buses, 

trains and trams 

Axis of flexibility  

Route and timetable 

are flexible 

Examples: Taxis, DRC, 

DAR, ODBRP 

 

Less flexibility  More flexibility  

Figure 1.: Flexibility within DRTS

locations, to a single destination where they can continue their journey. The paper
presents a heuristic algorithm to optimise the performance of the service. Specif-
ically, it focuses on transfers between the feeder buses and the vehicles at the terminal.

The level of flexibility refers to how much the bus service is allowed to change its
planning to satisfy the needs of the passengers. Figure 1 gives an overview of the
different levels of flexibility within DRTS. ‘Fully flexible’ DRTS are the services with
the most flexibility. These services typically don’t have fixed routes or timetables, and
take into consideration the individual demand for transportation. Consequently, these
services are better able to deal with sparse and ever-changing demand compared to
conventional services (Alonso-González et al., 2018). Some well-known fully flexible
DRTS are the Dial-A-Ride (DAR) problem and the Demand-Responsive Connector
(DRC). The DAR service improves transit accessibility by providing door-to-door
service to passengers who make a request with their desired pickup and drop-off
locations (Molenbruch et al., 2017). Sun et al. (2018) present a mixed-integer linear
programming model for a DAR-like demand-responsive feeder service. A heuristic
algorithm is used to solve the model, and the service is used in a case study in
Nanjing City, China. In the DRC, buses transport passengers from their starting
point to transfer hubs within a predefined service area (Li, 2009; Ceder, 2013).
Both Quadrifoglio and Li (2009) and Li and Quadrifoglio (2010) present analytical
and simulation models to assist service providers in deciding between a fixed feeder
service and a DRC based on operational circumstances. Passengers can notify the
service provider of their arrival using a smart-phone app or an Internet booking
service. Waiting customers are scheduled right before the start of each trip. Li
et al. (2023) present a model and solution method for the optimisation of a DRC
fed by shared bikes. The DRC is fed by bikes in order to decrease the number
of excessive detours which lead to diseconomies of scale for the service area. The
shared bikes serve as access/egress model for certain request points. The authors
propose a heuristic solution algorithm, which combines simulated annealing with
a branch-and-bound algorithm. Experiments on numerical cases demonstrate that
the introduction of shared bikes can reduce the DRC tour length and operational costs.

‘Semi-flexible’ DRTS have a partially predetermined planning that can be modified
in order to meet the needs of the passengers, and therefore have less flexibility
compared to fully flexible DRTS. Some examples of semi-flexible DRTS are the
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Mobility Allowance Shuttle Transit (MAST) service (Quadrifoglio et al., 2008), the
Customised Bus (CB) (Liu and Ceder, 2015) and the Demand-Adaptive System
(DAS) (Crainic et al., 2005). Vehicles in a MAST service have a fixed set of bus
stops that they must always visit, i.e., a fixed path, and these stops also have
fixed timetables. The vehicles, however, may deviate from the predetermined path.
Customers served outside of the fixed path are served at their preferred location,
which must be within a certain radius of the fixed path in a so-called ‘zone’. This
service combines the high flexibility of door-to-door services with a fixed main route
(Quadrifoglio et al., 2008). This concept has also been applied to feeder services. To
optimise such a problem, as well as a bus assignment sub-problem, Lu et al. (2015)
create a three-stage heuristic algorithm. Furthermore, Qiu et al. (2015) investigate
a feeder service similar to a MAST service that was implemented in Salt Lake City,
USA. Tang et al. (2023) study a similar transportation problem to MAST. However,
in this service, Modular Autonomous Vehicles (MAV) are used. These MAVs can
decouple from the main fleet to serve door-to-door requests. The authors develop an
optimisation model to determine the deviation of the routes, which MVAs should
decouple and the corresponding timetable. The goal is to minimise the total passenger
and operator costs. A case study is conducted using real data from Dalian (China).
The results show that, compared with a conventional service, passenger walking and
waiting times are significantly reduced.

The CB is a bus service that connects an origin area to a destination area with a
fixed express service and mostly dedicated lanes. However, the routes inside both
areas are flexible (Liu and Ceder, 2015). Guo et al. (2019) develop a CB service
and optimise the planning with an exact optimization model, similar to a DAR
optimization model with time windows. The solution includes intermediate stops
where passengers can change lines or services. The model is implemented for a case
study in Beijing, China. The results of the branch-and-cut algorithm are compared
to those of a Genetic Algorithm (GA) and a Tabu Search (TS) algorithm. Dou
et al. (2021) propose a CB problem which considers uncertain travel demands. The
authors propose a Mixed Integer Linear Programming (MILP) model to optimize the
bus routing, timetabling and bus deployment. To capture the uncertainty of travel
demands, a random variable describing the likelihood that the offered bus services are
rejected by potential passengers and two associated control parameters are embedded
in the MILP model.

In DAS, flexible routes are created for passengers who request transportation, while
buses continue to serve mandatory stops on fixed schedules. Initially, a master
scheduling defines only a portion of the routes and timetables. Later, each bus’ actual
schedule is built to include optional stops. Requests may be denied if they render the
tour impossible or unprofitable. These bus services were introduced and studied by
Crainic et al. (2005, 2012).

At times, a DRTS can be optimised together with a Traditional Transportation
Service (TTS), i.e., a service with fixed routes and timetables that do not change
based on the current demand for transportation. Zhao et al. (2021) present a model to
optimise a DRTS and a TTS simultaneously. The TTS serves all stops on a transit line
segment in both directions. However, the bus lines in the TTS cannot be extended,
nor can a new line be introduced. The DRTS serves all demand for transportation
within a certain demand area. The service is optimised with a two-step heuristic.
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Another example can be found in Leich and Bischoff (2019). The authors optimise a
service where a DRTS can be combined with a TTS. The results of this optimization
are compared with the results with a base case where only the TTS is available. It is
concluded that adding the DRTS lowers the waiting time and overall travel time.

The transportation services can be divided based on the degree of responsiveness
as well. Services are designated ‘Static’ when the planning is completed prior to a
specific deadline and no changes are possible afterwards. In ‘Dynamic’ services, the
planning can be modified when new incoming requests are received. The service in Lee
and Savelsbergh (2017) is an example of static planning. The study considers a DRC
to reduce operator costs while taking into account the time window for pickups and
drop-offs. The authors take into account the train frequency at the station and use
these time windows as operation parameters. The authors optimise the service before
the start of operation, using both a heuristic and an exact model, after which the
planning is fixed. The service presented in Fu and Liu (2003) is an example of dynamic
planning. The authors develop a real-time scheduling model with dynamic stop skip-
ping. The model optimises the vehicle schedule just before they leave the depot. This
allows for changes to the planning to be made before the vehicles are dispatched but
not after. This responsiveness is referred to as ‘Dynamic Offline’ by Vansteenwegen
et al. (2022). More responsiveness can be found in the service presented by Pratelli
et al. (2018). The service starts from a standard route and deviates from it when a
request is made, regardless of the position of each vehicle. Each route has a minimum
and maximum number of deviating stops. Requests are received in real-time and
each bus can change its planning at any time, even after the start of its operation.
This type of responsiveness is denoted as ‘Dynamic Online’. Wong et al. (2014)
study the influence of dynamism on the optimization of DRTS. The authors consider
different degrees of dynamism, i.e., the ratio of dynamic requests vs static requests,
for a pickup and delivery problem resembling a DAR problem. It is concluded that
a system with an intermediate level of dynamism incurs higher operational costs
and less requests are accepted when compared to fully static or fully dynamic systems.

The optimization model of the DFSMS is also similar to the Clustered Vehicle
Routing Problem with Time Windows (CluVRP), which was first introduced by
Sevaux and Sörensen (2008). In the (standard) Vehicle Routing Problem (VRP), a
set of customers are served by a set of vehicles that often have a limited capacity and
are dispatched from a central depot. The goal is to find the optimal routes to serve
all customers with the available vehicles (Clarke and Wright, 1964). The CluVRP
adds a constraint to the VRP, which forces the vehicles to visit all customers in a
certain cluster before moving on to the next cluster or returning to the depot. Defryn
and Sörensen (2017) propose a two-level VNS heuristic for solving CluVRP. It was
possible to obtain high-quality solutions for large scale benchmark instances in a
limited amount of computational time. Hintsch and Irnich (2018) present a Large
Neighbourhood Search (LNS) that uses multiple destruction and repair operators
along with a local improvement procedure. This solution managed to improve upon
the best-known solutions for seven benchmark instances. Freitas et al. (2023) propose
a branch-and-cut algorithm to solve the CluVRP with exact methods. Their algorithm
was able to solve instances of larger scale, which were previously not possible to be
solved with exact methods.

The DFSMS can be classified as a semi-flexible, dynamic online, many-to-one bus
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service. The DFSMS is most similar to the feeder service variant of the MAST service
and the DAS. Our feeder service, like MAST and DAS services, has a fixed route
from which it can deviate. MAST services provide door-to-door service to some
customers within a certain radius, whereas our service assigns and groups passengers
at a limited number of bus stops. As previously mentioned, the use of fixed bus
stops can benefit transit-oriented urban development (Knowles et al., 2020; Ibraeva
et al., 2020). DAS work with bus stops, but there is no bus stop assignment and the
passengers’ walking times are not taken into account. However, bus stop assignment
improves the efficiency of bus assignment and routing (Melis and Sörensen, 2021). The
fixed route’s timetable is also fixed and cannot be changed in MAST. DAS requires
buses to depart from fixed route stops within specific time windows. This limits the
amount of time DAS or MAST buses can spend deviating from the main route. Our
service is more adaptable, while still ensuring that at least one bus departs from the
mandatory bus stops within a certain time frame.

Semi-flexible services can offer opportunities to improve service quality. These ser-
vices can incorporate positive characteristics of both TTS (predictability, ease of use,
cost efficiency) and DRTS (adaptiveness to changing demand). Furthermore, demand-
responsive services can greatly benefit from dynamic online optimisation since this
makes these services more attractive to be implemented by offering more flexibility in
the day-to-day operation of the service. However, Vansteenwegen et al. (2022) show
that there is a limited number of articles that study dynamic online many-to-one ser-
vices. More specifically, only Pratelli et al. (2018) study a dynamic online semi-flexible
many-to-one DRTS. There is thus a clear gap in the literature for such DRTS. More-
over, there is a need for semi-flexible many-to-one DRTS that can handle a larger
number of on-demand requests while still taking into account the needs of passengers
without a reservation. Moreover, most services similar to the FSMS and DSFMS that
are studied in the literature are optimized on either small scale instances, optimized
with simple insertion heuristics or are based on a problem that is divided into subprob-
lems to reduce the complexity of the optimization model, which can lead to solutions
of lesser quality. Very few papers aim to solve these services as an integrated problem
and in a real-time manner, as we will do in this paper.

3. Problem Description

In this section, the dynamic Feeder Service with Mandatory Stops (DFSMS) is de-
scribed in more detail. The notation of the different parameters, sets and variables
can be found in Table 1. Note that the number of trips |J | that each bus needs to
make is not fixed. The size of J depends on the number of transportation requests
that are made within a certain time-frame. If a certain bus needs to make an addi-
tional trip because more transportation requests are received, the set is updated. The
maximum headway at the mandatory stops can influence the number of trips as well.
A small headway means that buses must depart more frequently at the mandatory
stops, which can lead to each bus making a larger number of trips.

3.1. Description of the DFSMS

Bus lines of the DFSMS are designated shuttle buses that transport residents of a
low-demand area to a transportation hub or a nearby city centre, i.e., all passengers
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Sets

B Set of buses
J Set of all possible trips of a bus
O Set of optional bus stops
F Set of mandatory bus stops
S Set of all bus stops: S = F ∪O
P1 Set of passengers with a desired arrival time
P2 Set of passengers with a desired departure time
Pb Set of passengers that have been already assigned to a bus in a previous optimization iteration
Pa Set of new incoming passengers that requested the service
P Set of all passengers using the service

Parameters

R Total number of passenger requests throughout the planning horizon
Kk Number of optional bus stops in cluster k
M Number of clusters with optional stops
T t
ij Travel time from bus stop i ∈ S to bus stop j ∈ S

Tw
pi Walking time of passenger p ∈ P to departure bus stop i ∈ S

T arr
p Desired arrival time of passenger p ∈ P1 at the destination bus stop m|F |−1

T dep
p Desired departure time of passenger p ∈ P2 at their assigned departure stop
T sr Amount of time needed to travel from m0 to m|F |−1

T 0
p Original departure time communicated to passenger p ∈ Pb at their assigned departure stop

Df Maximum headway at the mandatory stops
Dw Maximum value for individual walking time
Dla Maximum value for arriving later than the desired arrival time T arr

p

Dea Maximum value for arriving earlier than the desired arrival time T arr
p

Dld Maximum value for departing later than the desired departure time T dep
p

Ded Maximum value for departing earlier than the desired departure time T dep
p

Dtl Maximum value for departing later than the original departure time T 0
p

Dte Maximum value for departing earlier than the original departure time T 0
p

Drt Maximum waiting time for a transportation request notification
C Capacity of the buses
Cb Available number of seats of bus b ∈ B for a given solution
Wi Relative weight given to objective function component i
Ht

p Time at which the request of passenger p ∈ Pa is received

Decision Variables

xbtij
0-1 variables determining if bus b ∈ B, on his tth trip, visits bus stop j ∈ S immediately
after visiting bus stop i ∈ S

ypbti
0-1 assignment variables which assume value 1 if passenger p ∈ P is assigned to
bus b ∈ B, on his tth trip, and to departure bus stop i ∈ S

ap Arrival time of passenger p ∈ P at destination bus stop m|F |−1

dp Departure time of passenger p ∈ P at their assigned departure stop
alatep ap − T arr

p when passenger p ∈ P1 is late

aearlyp T arr
p − ap when passenger p ∈ P1 is early

dlatep dp − T dep
p when passenger p ∈ P2 is late

dearlyp T dep
p − dp when passenger p ∈ P2 is early

dsbti Departure time of bus b ∈ B, on its tth trip, at stop i ∈ S
tbdbt Time at which bus b ∈ B, on its tth trip, is available for departure at stop m0

Table 1.: Notation for the optimization problem after new requests are received
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arrive at the same location. We assume that each bus line has its own area to cover,
including all possible walking areas, and that no bus stops are shared with other lines.
Therefore, all bus lines in the DFSMS are operated and scheduled independently. A
bus line is operated by a fleet of |B| buses, i.e., there are |B| buses with different
schedules that travel along the same line. The buses serve |S| bus stops, which can
be divided into two types of bus stops: |F | mandatory stops and |O| optional stops.
Each bus visits all mandatory stops and these stops have a maximum allowable
headway of Df seconds, i.e., at least one bus must depart from each mandatory stop
within Df seconds after the previous bus. This means that passengers, who did not
make a formal request for transportation, waiting at mandatory stops do not need
to wait longer than Df seconds for a bus. The optional stops are only visited when
demand is assigned to them. Passengers are assigned a departure stop, within walking
distance, to which they must walk to. A stop is considered within walking distance
for a passenger if the walking time to the bus stop does not exceed a maximum
walking time of Dw seconds. The mandatory stops can, for example, be placed along
a main road. The optional stops are grouped into different clusters. The optional
stops in a cluster are typically close together and scattered across a small town or
neighbourhood near the main road where the mandatory stops are located.

Note that the maximum headway at the mandatory stops does not necessarily need
to be smaller than the travel time between mandatory stops. In the case a bus
would arrive too early at a mandatory stop, i.e., too early to meet the headway
constraints, the bus is allowed to wait at the mandatory stop to still satisfy the
headway constraints. In most cases, if there are enough buses available, this would not
be an issue since a bus can be dispatched afterwards to meet the maximum headway
constraints. The bus that is dispatched afterwards does not have to be assigned to
a passenger request and is dispatched from the depot as late as possible, while still
respecting the headway constraints.

The buses always start at the first mandatory stop m0 and end at the last mandatory
stop m|F |−1, this is denoted as a ‘trip’. A bus route can deviate from the main route
and visit some optional stops in a cluster. The bus can travel from one cluster to the
next mandatory stop, an optional stop in the same cluster, or an optional stop in a
different, nearby cluster. After a bus has reached the last mandatory stop m|F |−1, it
goes back to the first mandatory stop m0 following the shortest path without serving
any stops. Afterwards, this bus can be reused for the next trip. The DFSMS also
considers a limited capacity C for each bus. The available number of seats Cb of bus
b ∈ B at the time of re-optimization can differ for each bus, depending on how many
passengers are onboard bus b. Although the service can still overcrowd if there are
too many passengers without reservations, the capacity constraints help to control
the crowding of passengers with reservations, which can alleviate crowding in general.

A passenger requests a ride online, in which they specify their starting location and

desired arrival time T arr
p or departure time T dep

p . Arriving or departing respectively

Dea or Ded too early, and arriving or departing respectively Dla or Dld too late is
not permitted. Furthermore, arriving or departing sooner or later than the desired
arrival time is penalised in the objective function. Passengers’ arrival and departure
times are thus part of both the constraints and the objective function. The timetable
of the buses at the mandatory and optional stops is know and updated publicly every
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time the planning is re-optimised. Potential passengers who did not make a request
but are aware of the timetable information can board a bus at either the mandatory
or optional stops. Potential passengers who are unaware of the service request or
timetable information can still catch a bus at the mandatory stops with a guaranteed
(low) maximum waiting time.

3.2. Objective function

The objective is to optimise the service quality by minimizing four factors. First, all
passengers’ in-vehicle time. Second, the passengers’ walking time from their start-
ing point to the designated bus stop. Finally, for each passenger, the time difference
between the desired arrival time and the actual arrival time or the time difference
between the desired departure time and the actual departure time. These metrics
are then weighted and added to form an objective function. The weights of this sum
can be determined based on the situation and the service provider’s preferences. The
objective function is given below.

Min

z = W1

∑
p∈P

(ap − dp)

 (1)

+W2

∑
b∈B

∑
t∈J

∑
i∈S

∑
p∈P

Tw
piypbti

 (2)

+
∑
p∈P1

(
W3a

late
p +W4a

early
p +

)
+

∑
p∈P2

(
W5d

late
p +W5d

early
p

)
(3)

The objective function above is only used for accepted passenger requests. When a
passenger is rejected, a penalty must be added to the objective function. This penalty
can be composed of the objective function’s maximum values for each component. In
particular, a penalty zp is given by:

zp = W1T
short +W2T

w +W3max
(
Ded, Dld, Dea, Dla

)
(4)

In this equation, T short is the travel time from m0 to m|F |−1 if two random optional
stops per cluster are visited. This is expected to be a relatively long route for an
average bus trip and can thus serve as a realistic upper bound for the first component
of the objective function.

3.3. Constraints of the optimization model

The first constraints deal with the routing of the buses. Constraints (5) ensure that,
for the mandatory stops, exactly one arc enters or leaves. Constraints (6) ensure that,
for all other bus stops, at most one arc enters or leaves any stop. If an arc enters the
stop, there must be an arc leaving the stop and vice versa (7). The only exceptions
are m0, where exactly one arc leaves and none enter, and m|F |−1, where exactly one
arc enters and none leave. Constraints (8) and constraints (9) ensure that no bus ever
has stop m0 as a successor or stop m|F |−1 as a predecessor.
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∑
j∈S

xbtij = 1 ∀ i ∈ F, b ∈ B, t ∈ J (5)

∑
j∈S

xbtij ≤ 1 ∀ i ∈ O b ∈ B, t ∈ J (6)

∑
l∈S

xbtil =
∑
l∈S

xbtli ∀ i ∈ S0,N−1, b ∈ B, t ∈ J (7)∑
i∈S

xbti0 = 0 ∀ b ∈ B, t ∈ J (8)∑
i∈S

xbtN−1i = 0 ∀ b ∈ B, t ∈ J (9)

A second group of constraints deals with capacities or threshold values. Constraints
(10) ensure that no passenger needs to walk for a longer time than a predefined max-
imum value Dw, this is important for the passenger-stop assignment. Similarly, con-
straints (11) ensure that any optional stop that is farther away than a mandatory stop
to a passenger, is not considered as a possible departure stop for that passenger. It
needs to be noted that both sets of constraints can be dealt with as an input, i.e.,

if Tw
pi > min

(
Dw,mink∈F Tw

pk

)
then ypbti = 0, ∀ p ∈ P, i ∈ S, b ∈ B and t ∈ J .

Constraints (12) regulate the number of passengers on each bus, so that buses can-
not transport more passengers than the current number of available seats Cb on bus
b. Constraints (13) to (14) ensure that all passengers arrive and depart within the
required time window. It must be noted that parameters Dld, Ded, Dla and Dea can
be chosen by the service provider. Setting one of these parameters to a value of zero
transforms the desired arrival/departure time of the passengers into the earliest or
latest arrival/departure time.

Tw
piypbti ≤ Dw ∀ p ∈ P, i ∈ S, b ∈ B, t ∈ J (10)

Tw
piypbti ≤ min

k∈F
Tw
pk ∀ p ∈ P, i ∈ O, b ∈ B, t ∈ J (11)∑

p∈P

∑
i∈S

ypbti ≤ Cb ∀ b ∈ B, t ∈ J (12)

alatep ≤ Dla, aearlyp ≤ Dea ∀ p ∈ P1 (13)

dlatep ≤ Dld, dearlyp ≤ Ded ∀ p ∈ P2 (14)

Constraints (15) and (16) define the decision variables aearlyp , alatep , dearlyp and dlatep

as positive deviations between the actual arrival or departure time and the desired
arrival or departure time of the passengers. Given the objective function, in each set
of constraints, one of the two variables will be zero for each passenger p in the optimal
solution.

T arr
p − ap + alatep − aearlyp = 0 ∀ p ∈ P1 (15)

T dep
p − dp + dlatep − dearlyp = 0 ∀ p ∈ P2 (16)
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Constraints (17) and (18) define the variables dp and ap, the departure time and the
arrival time of a passenger p, respectively.

If ypbti = 1 then dp = dsbti ∀ i ∈ S, b ∈ B, t ∈ J, p ∈ P2 (17)

If
∑
i∈S

ypbti = 1 then ap = dsbt|F |−1 ∀ b ∈ B, t ∈ J, p ∈ P1 (18)

Constraints (19) to (21) define the variables dsbti and tdbt. Furthermore, buses are not
allowed to depart from the first mandatory stop, on any trip t, before their available
departure time tdbt. These constraints ensure that a bus stop is not served later in time
than a following bus stop in the route. This makes subtour elimination constraints
unnecessary.

dsbt0 ≥ tdbt ∀ b ∈ B, t ∈ J0 (19)

tdbt = dsbt−1N−1 + T sr ∀ b ∈ B, t ∈ J0 (20)

If xbtij = 1 then dsbtj = dsbti + T t
ij ∀ i ∈ S|F |−1, j ∈ S0, b ∈ B, t ∈ J (21)

Constraints (22) to (23) ensure the amount of time between two consecutive buses
departing from a mandatory stop does not exceed Df. These constraints model the
maximum allowable headway at the mandatory stops. We denote them as the headway
constraints from now on.

δbti ≤ dsldi − dsbti ∀ l 6= b ∈ B, d 6= t ∈ J, b ∈ B|B|, t ∈ J|J |, i ∈ F (22)

δbti ≤ Df ∀ b ∈ B|B|, t ∈ J|J |, i ∈ F (23)

Lastly, constraints (24) ensure that every passenger is assigned to at most one bus on
a trip and one departure bus stop.∑
b∈B

∑
t∈J

∑
i∈S

ypbti ≤ 1 ∀ p ∈ P (24)

Constraints (25) ensure that optional stops are visited when there is at least one
passenger assigned to the optional stop.

If
∑
p∈P

ypbti > 0 then
∑
l∈S

xbitl = 1 ∀ i ∈ O, b ∈ B, t ∈ T (25)

The remaining constraints determine the domains of the variables.

ypbti ∈ {0, 1} ∀ b ∈ B, t ∈ J, b ∈ B, p ∈ P (26)

xbtij ∈ {0, 1} ∀ b ∈ B, t ∈ J, i ∈ S, j ∈ S (27)

dsbti, δbti ∈ <+ ∀ b ∈ B, t ∈ J, i ∈ S (28)

tdbt ∈ <+ ∀ b ∈ B, , t ∈ J (29)

ap, a
late
p , aearlyp ∈ <+ ∀ p ∈ P1 (30)

dp, d
late
p , dearlyp ∈ <+ ∀ p ∈ P2 (31)
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3.4. Explanatory example

Figure 2 shows a small example of the DFSMS. In this example, a single bus is used
for two trips, bus trips A and B. During the planning horizon, the service receives
thirteen passenger requests. Each passenger must arrive at their destination or depart
from a bus stop within a specific time window. Bus trip A accepts five passenger
requests, while bus trip B accepts six. Two of the thirteen requests cannot be served
and are rejected. Accepted passengers are green coloured triangles, while rejected
passengers are white triangles. The passengers are identified with numbers in the
figure as well.

Six mandatory stops are labelled m0 through m5. The first mandatory stop is at
the start of each bus trip’s route, and the last mandatory stop is at the destination.
There is a cluster of six optional stops between two mandatory stops. The clusters are
named c1 through c5. A dashed line represents the main route, which is the shortest
route from the start to the destination that only visits the mandatory stops. To pick
up passengers, the bus deviates from the main route. If a bus stops at an optional
stop to pick up a passenger, the optional stop is coloured black.

Passengers make a request online through a mobile app, at any time before or during
the planning horizon. Passenger requests can be accepted or rejected, an answer is
provided within minutes. Accepted passengers are assigned to both a bus trip and
a bus stop. This assignment is represented by a dotted line connecting a passenger
and a bus stop visited by a bus during a trip. Two passengers are assigned to the
same optional stop on bus trip B in cluster c4, despite the fact that that bus stop is
not the closest stop to them both. This is done to reduce the in-vehicle time of the
passengers onboard the bus on trip B, thereby further reducing the objective function
and/or making the solution feasible. After all, if a passenger does not arrive at their
destination within the specified time window, a solution may become infeasible. This
can happen, for example, if their bus makes too many stops and takes too long to
arrive at their destination.

Table 2 gives an overview of how the pick up times of the passengers in the explanatory
example are determined. The time at which each passenger made a request is shown
in the second column and the rows are sorted in ascending order of this value. When
a passenger request is accepted, the service providers provide a tentative pick up time
to the passenger. Often, this pick up time would change over time, i.e., if the actual
pick up time (in column five) is different from the tentative time (column four), when
new requests are received. However, the actual pick up time is always within the
promised time window, which is given in the third column of Table 2. Passengers two
and 13 are rejected. For example, this can be the due to the fact that their desired
arrival or departure times were too far ahead in the future to still accommodate both
the already accepted passenger requests and the new incoming request.

When the bus on trip A arrives at its destination, it is returned to the starting point
to be reused for the next trip, i.e., bus trip B. Figure 2 depicts the bus schedule at the
mandatory stops as well. This schedule is not fixed and is determined by the demand
for transportation. The bus on trip A, for example, takes longer to travel from m1

to m2 than Bus trip B because it must pick up more passengers in cluster c2. When
the departure times of both bus trips are compared, it is clear that a bus departs
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Passenger
Time at which a
request is made

Promised pick up
time window

Tentative pick
up time

Actual pick
up time

Bus
trip

3 9:40 [10:00, 10:10] 10:05 10:05 A
5 9:50 [10:04, 10:14] 10:09 10:09 A
4 9:58 [10:02, 10:12] 10:07 10:07 A
10 10:01 [10:10, 10:20] 10:15 10:14 A
11 10:07 [10:05, 10:15] 10:10 10:14 A
2 10:10 Rejected
7 10:10 [10:30, 10:40] 10:35 10:34 B
9 10:20 [10:38, 10:48] 10:43 10:39 B
1 10:23 [10:26, 10:36] 10:31 10:31 B
6 10:28 [10:29, 10:39] 10:34 10:34 B
8 10:32 [10:30, 10:40] 10:35 10:39 B
12 10:35 [10:38, 10:48] 10:43 10:42 B
13 10:45 Rejected

Table 2.: Determination of passenger pick up times for the explanatory example of
the dynamic Feeder Service with Mandatory Stops

from each mandatory stop in less than 30 minutes. In this example Df = 30 minutes,
making this solution feasible. Furthermore, once the bus arrives at the last mandatory
stop on trip A, it takes 10 minutes to reach the first mandatory stop to begin trip B.
To obtain a feasible solution, the time it takes for the bus to return to be reused for
the next trip must be considered.

3.5. Aspects of the dynamic online optimization

The main differences between the FSMS and the DFSMS is that the latter is
optimised in real-time, which brings some additional restriction for the optimization
model. Passengers receive a response whether or not their request has been scheduled.
To ensure passengers are notified about the response to their requests, there is a
restriction on the maximum waiting time Drt for a request notification. If it is not
possible to serve a passenger within the given restrictions, their request is rejected.
Passengers that receive a confirmation for their request are given a departure stop
and a tentative pickup time T 0. Furthermore, passengers are guaranteed to be
picked up at their assigned departure stop within a promised pickup time window
∆d =

[
T 0 −Dte, T 0 +Dtl

]
, with Dtl and Dte parameters of the service that determine

the length of the pickup time window. The earliest pickup time is communicated to
the passengers, this allows them to begin walking towards their departure stop on
time. Therefore, we assume the waiting time for a bus for passengers who made a
request is zero. Waiting times can still occur when there are delays due to externalities
such as congestion. However, we work with deterministic travel times in our model,
which cannot change over time. This, in turn, means that the model cannot account
for real-time delays. Requests are received by the service throughout the planning
horizon, which is typically a few hours. Whenever a new request is received, the route
of each bus is (re-)optimised. New passengers are notified about their departure stop
and tentative time of departure, while the other passengers are notified about their
updated departure time, which is within their promised time window ∆d. Moreover,
we will assume that passengers do not need to wait more than a certain amount
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Figure 2.: Example of the DFSMS

of timeDrt, after sending a request, for a notification about their journey or a rejection.

To simplify the problem to some extent, the following assumptions are made. The
first assumption concerns the re-optimization, leading to some additional constraints
for each bus. There are three types of situations in which the planning is fixed and
cannot be changed. First, bus stops and timetables that were already scheduled to be
visited in the past, with respect to the time of re-optimization, cannot be changed.
Second, if the bus is moving between bus stops during the re-optimization process,
the next bus stop that was supposed to be visited must be visited in accordance with
the previous timetable. Third, if a departure bus stop has already been assigned to
a passenger, it must be visited as well. Furthermore, passengers that have already
made a requests need to be picked-up within the promised time window ∆d

p .

We also assume that Ht
p < T dep

p − Ded or Ht
p < T arr

p − T t
s(|F |−1) − Dea with s the

closest bus stop to p and Ht
p the time at which p made a request. This is required to

ensure that all new passenger-bus assignments are at least theoretically feasible.

Furthermore, it needs to be noted that the routes of the buses are partially fixed. The
locations of the mandatory stops are sorted by the distance to the destination m|F |−1

and are visited in that order. We assume that the buses are not allowed to revisit
a mandatory stop or optional stops in a cluster that has been visited already. For
example, if a passenger makes a request at 8:30 to be picked up at mandatory stop
m1 and bus b visited m1 at 8:25 already, then bus b is not allowed to visit m1 again
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to pick up this passenger. The passenger is then either picked up by a different bus or
the request is rejected if there are no other buses available at that time.

4. Solution approach

In this section, the heuristic that is developed to optimise the DFSMS is explained
in more detail. First, the steps need to be taken before the start of the algorithm are
explained. Afterwards the insertion phase is explained, followed by the improvement
phase.

4.1. Preprocessing

Before the start of the planning horizon, an algorithm to determine route BR is
executed once. The inputs for this algorithm are the travel times of a bus between
all bus stops. The output is route BR, which is a route that is constructed with the
aim of minimizing the total travel time of a bus that visits all bus stops. This route is
constructed in order to insert additional optional stops in the best possible position
in existing routes later on in algorithm Update_Route. The exact manner of how BR
is utilised in Update_Route is explained in Section 4.3.

The algorithm to determine BR is as follows. First, an initial feasible route is con-
structed and afterwards it is improved with a 2-opt procedure. The initial route is
constructed by adding all the mandatory stops first and then adding optional stops
of a certain cluster between the two corresponding mandatory stops. The 2-opt algo-
rithm implemented here is a first-improvement algorithm, and selects two edges of the
existing route and swaps them if and only if the objective function value is lowered by
this swap. The algorithm randomly chooses the first edge in the existing route. The
second edge is chosen from either two optional stops in a nearby cluster or from edges
connecting mandatory stops nearby. This is done because most or all inefficiencies are
localised in or around the clusters of optional stops, due to the structure of the bus
stops.

4.2. Prior to the start of operation

In this section, the initial planning of the service is determined. This is the planning
before the service starts to operate and it concerns the routing and timetabling of all
buses and bus trips. The heuristic starts by optimizing the planning of the service
with the requests that are received prior to the start of operation. This is done with
the algorithm presented in Section 4.4, here denoted as Improvement(p ∈ P 0

b ), with
P 0
b the set of passengers that requested the service before the start of the planning

horizon, i.e., the passenger requests that were known in advance. In Section 4.4, this
algorithm is subject to additional restrictions related to the dynamic nature of the
DFSMS, such as the promised pickup time windows and previously assigned departure
bus stops. However, for the construction of the initial static solution this is not the case.

The outputs of Improvement(p ∈ P 0
b ), as well as the output of any re-optimization,

are the current free number of seats Cb of each bus b ∈ B, the promised pickup time
windows ∆d

p =
[
T 0
p −Dte, T 0

p +Dtl
]
for each passenger p ∈ Pb, as well as the route
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and timetable of each bus trip. If no requests are received prior to the start of the
service, all buses are dispatched to meet the maximum headway constraints at the
mandatory stops, i.e., buses are dispatched every Df seconds.

4.3. Insertion phase

Whenever a new request is received, the heuristic must re-optimise the service
with the Insertion algorithm. The algorithm begins by iteratively processing each
passenger request received at the time. Requests received first will be processed first,
i.e., on a first-come-first-serve basis.

For each new passenger request p, the algorithm will go over each possible bus b on
trip t that can be assigned to passenger p. To further improve the runtime of the
Insertion algorithm, certain buses on certain trips are not considered. Only buses b
on their tth trip that satisfy the following conditions are considered:∣∣∣d0sbt(|F |−1) − T arr

p

∣∣∣ ≤ δ1 ∀ p ∈ Pa ∩ P1 (32)∣∣∣ ˆd0sbtp − T dep
p

∣∣∣ ≤ δ2 ∀ p ∈ Pa ∩ P2 (33)

Tw
ps +Ht

p − ˆd0sbtp ≤ δ3 ∀ p ∈ Pa (34)

With d0sbti the departure time of bus b on trip t departing from bus stop i, which was

determined in the previous optimization. ˆd0sbtp is an estimate departure time of bus b
on trip t from the closest bus stop s from passenger p. If s is already part of the route,

then ˆd0sbtp = d0sbts. If s is not part of the route already, then ˆd0sbtp is determined by adding

s to the current route and calculating the departure time at s. δ1, δ2 and δ3 are posi-
tive threshold values and are considered to be parameters of the Insertion algorithm.
These parameters determine the number of bus trips that are considered and thus
influence the runtime as well as the objective value. The set of bus trips t that satisfy
these conditions is denoted as Tf . Inequality 32 and 33 make sure that the departure
time of bus b at departure stop s is not too distant in time from, respectively, the
desired arrival time or the desired departure time of the incoming passenger request p.
This ensures that buses that are scheduled too early or too late, and therefore cannot
be feasible candidates, are not considered. Inequality 34 makes sure that the departure
time of bus b at stop s is later (or not too much earlier) than the time at which the
request is received plus the time it takes to walk to bus stop s. This ensures that
passengers have enough time to walk to their assigned departure stop to catch the bus.

Hereafter, we first determine whether or not there are currently enough available seats
in the bus, i.e., if Cb < C. If and only if this is the case, the algorithm must determine
whether it is feasible to assign passenger p to bus b on trip t and departure stop s. We
denote the set of feasible bus stops, i.e., the bus stops that are within walking distance,
as Sc. First, the route of trip t is temporarily updated with Update_Route(t, s, p) in
case stop s is not part of the route already. This is done with the help of the route BR,
the highly efficient route that visits all bus stops, determined during preprocessing.
The departure bus stop s is inserted in the current route depending on where s is
placed in BR. For example, if BR is [m0, o0, o1,m1, o2, o3,m2], the current route is
[m0,m1,m2] and we wish to insert bus stop o2 in the current route, then it should be
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inserted between m1 and m2 because that is the most similar placement of o2 in BR.
By updating the route in this manner, we can assure that the route remains efficient,
without the need to perform heavy time-consuming improvements on it. Since part of
the route is fixed, this method of updating the route yields good results.

Afterwards, we temporarily update the timetable with Update_Timetable(t, s, p) as
well, in order to make the assignment feasible. When a new passenger p is assigned to
bus trip t, the timetable of trip t needs to be modified in order to make the assignment
feasible. On the one hand, if p ∈ P1, the bus needs to arrive at the destination within
time window

[
T arr
p −Dea, T arr

p +Dla
]
. On the other hand, if p ∈ P2, the bus needs

to depart from s within time window
[
T dep
p −Ded, T dep

p +Dld
]
. The minimal shift

that is needed to accommodate the new passenger p is denoted as T s
ps. The maximum

shift that the timetable is allowed to shift, while still making the assignment of p
possible is denoted as Tm

ps. Both T s
ps and Tm

ps can be negative or positive, however,∣∣T s
ps

∣∣ ≤ ∣∣Tm
ps

∣∣ always holds true. It needs to be noted that it is possible that the ex-
isting timetable is already feasible for the insertion of passenger p, in that case T s

ps = 0.

The next step is to calculate the maximum allowable time that a bus trip’s timetable
can shift forwards or backwards before constraints are violated. The desired arrival or
departure times of the passengers onboard, combined with the headway constraints,
create feasible time windows for the bus to depart at each bus stop. These feasible
time windows are determined by the desired arrival times T arr

p or the desired departure

times T dept
p , as well as parameters Dtl and Dte of passengers p onboard bus b on

trip t who have not been picked up yet. Furthermore, the headway constraints of
the mandatory stops that have not been visited yet must also be considered. For
passengers onboard bus b on trip t that were already given a tentative pickup time
window, the ∆d

p constraints also need to be respected. Finally, the availability of the

buses must be considered as well. If the bus has not yet left m0, then tbdbt can be
used to determine whether or not the bus can shift its timetable backwards. In the
case the bus has already left m0, the part of the route and timetable that is in the
past with respect to Ht

p cannot be changed. The remainder of the timetable can then

only be shifted forwards. We can then generate two lists Ll and Lu, containing the
differences in time between the current departure time d0sbti of bus b on trip t and
respectively the lower and upper bounds of the feasible time window of each visited
stop s. The parameters Dsp and Dsf are the minimum values of respectively Ll and Lu.

The passenger assignment is only feasible if T s
ps ≤ Dsp in case T s

ps is negative and

T s
p ≤ Dsf in case T s

ps is positive. If a bus is driving at the time of re-optimization,
the shift in timetable can only be in the future and this can involve idle waiting
time in order to satisfy the desired departure time constraints. For the Insertion
algorithm, we opt to modify the timetable with the smallest possible shift, i.e., with
T s
ps. Later on, the planning of the operation will be improved further with the function

Improvement, where we will not always modify the timetable with the smallest shift
in time, as explained in the next section. To further decrease the runtime of the
algorithm, we will only consider bus stops that are within walking distance from
passenger p, i.e., ∀s ∈ S|Tw

ps ≤ Dw.

The additional cost of each passenger-bus stop assignment is calculated for feasible
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bus trips. The additional cost ∆Cps of assigning passenger p ∈ Pa to bus stop s is
calculated as follows:

∆Cps = |Pt|∆T + Tw
ps +∆W (35)

Pt denotes the set of passengers onboard bus b during trip t at the time of the re-
optimization. ∆T is the additional in-vehicle time incurred by visiting bus stop s.
The difference between the third component of the objective function in the previous
optimization and the current optimization is denoted by ∆W and is calculated as
follows:

∆W =
∑

p∈Pt∩P1

((
alatep − a0latep

)
+

(
alatep − a0earlyp

))
+

∑
p∈Pt∩P2

((
dearlyp − d0latep

)
+

(
dearlyp − d0earlyp

))
(36)

It should be noted that ∆T and Tw
ps are always positive, whereas ∆W can become

negative if enough of its components are negative. However, a negative ∆W is unlikely
to be a common occurrence.

After the additional cost ∆Cps of all the possible passenger-bus and passenger-bus-
stop assignments are calculated, the assignment that inquires the lowest additional
cost ∆Cmin

p is chosen. Passenger requests without a feasible assignment are rejected.
The pseudo-code of the insertion heuristic is shown in Algorithm 1.

4.4. Improvement phase

To further optimise the operation of the DFSMS, part of the service is improved with
the use of algorithm Improvement. First, we make a distinction between passengers
p ∈ Ps that are assigned to a bus that has already left m0 and passengers p ∈ Pd

that have been assigned to a bus that has not left m0 yet. Hereafter, we optimise the
service taking only passengers p ∈ Pd into consideration and assume that the service
planning of passengers p ∈ Ps cannot be changed anymore. In essence, algorithm
Improvement can be viewed as an algorithm that improves the solution of a static
FSMS, with additional constraints related to the dynamic nature of the DFSMS. The
reason to make a distinction between Ps and Pd is because algorithm Improvement is
expected to run for a relatively longer time compared to the Insertion algorithm .
This runtime time might be too large to notify a passenger p ∈ Ps on time, who is
assigned to a bus that is already in operation, about the planning. The inputs for this
algorithm are the timetables and routes that are in the past and cannot be changed
anymore, as well as the current trip t each bus b ∈ B is at and the updated available
times tbdbt for departure from the depot m0. It has to be noted that from now on, the
available time for departure of each bus is referred to as tbdb and is updated as new
trips are generated.

4.4.1. Outline of the algorithm

Improvement(p ∈ Pd) is an iterative greedy constructive heuristic. The outline of
the Improvement algorithm is shown in Algorithm 2. The Improvement algorithm
constructs a complete solution in each of its iterations i, which we denote as
construction iterations. A complete solution consists of a set of buses, that make a
number of trips. A bus trip corresponds to the journey of a bus from the starting
point to the destination. The construction of a complete solution in each iteration i
is denoted as Construct_Solution in Algorithm 2. Construct_Solution contains,
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Algorithm 1: Main outline of the Insertion algorithm for the re-optimization

1 Sort passengers p ∈ Pa according to Ht
p

2 for p ∈ Pa do
3 ∆Cmin

p =∞
4 sm = −1
5 tm = −1
6 Determine the set of favorable buses Tf

7 for t ∈ Tf do
8 if Cb < C then
9 Determine Dsp and Dsf

10 Sc =
{
∀s ∈ S|Tw

ps ≤ Dw
}

11 for s ∈ Sc do
12 Temporarily modify t with Update_Route(t, s, p) and

Update_Timetable(t, s, p)
13 Determine T s

ps

14 if T s
ps ≤ Dsp ≤ 0 or 0 ≤ Tm

ps ≤ Dsf then
15 Calculate ∆Cps

16 if ∆Cmin
p > ∆Cps then

17 ∆Cmin
p = ∆Cps

18 sm = s
19 tm = t

20 end

21 end

22 end

23 end

24 end
25 if sm 6= −1 then
26 Assign passenger p to bus trip tm and bus stop sm with additional cost

∆Cmin
p

27 Update_Route(tm, sm, p)
28 Update_Timetable(tm, sm, p)
29 end

30 end
31 if Pd 6= ∅ then
32 Improvement(p ∈ Pd)
33 end
34 if No feasible assignment possible for p then
35 Reject passenger p
36 else
37 Add p to Pb

38 end
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among others, the generation of many bus trips. The generation of a single bus trip
consists of assigning passengers to a bus b on a certain trip t and constructing its
route and timetable. The generation of a bus trip is denoted as a trip generation.
When no more bus trips can be scheduled within a certain planning horizon, the
solution is complete and Construct_Solution ends.

The construction algorithm Construct_Solution, in any iteration i, is greedy because
it aims to construct the best routes, timetables and assignments for one bus trip at
a time regardless of the next bus trips. This means that there are instances where
the resulting solution is infeasible because not all passengers are assigned to a bus.
Due to the tight constraints of the optimization model, infeasible solutions can
often not be restored to feasibility without constructing the solution from scratch.
For this reason, these infeasible solutions are discarded. The construction algorithm
Construct_Solution is explained in more detail in Section 4.4.2.

To bring more variance into the construction of solutions, construction parameters
are introduced. These parameters guide Construct_Solution and bring a balance be-
tween greediness and feasibility of the construction algorithm by determining whether
or not a certain passenger is assigned to a bus trip. This allows Construct_Solution
to find more solutions with a better objective value or to find more feasible solutions
for instances with strict constraints. The mechanisms of these parameters are
discussed in Section 4.4.3.

The values of the construction parameters are randomly sampled and a new complete
solution is generated and evaluated for a certain number of times N stop or after a
certain amount of computation time T stop has passed.

Algorithm 2: Main outline of the Improvement algorithm of the re-
optimization of the dynamic Feeder Service with Mandatory Stops

1 Sample feasible incumbent construction parameters rb1, ..., rbm

2 Incumbent solution = Construct_Solution(rb1, ..., rbm)
3 i = 1
4 τ = 0
5 while i ≤ N stop and τ ≤ T stop do
6 Randomly sample candidate construction parameters rc1, ..., rcm ; // See

4.4.3
7 Candidate solution = Construct_Solution(rc1, ..., rcm) ; // See 4.4.2
8 if new solution is feasible then
9 ∆E = objective function value candidate solution - objective function

value incumbent solution
10 if ∆E < 0 then
11 Incumbent solution ← Candidate solution

12 rb1, ..., rbm ← rc1, ..., rcm

13 i++
14 τ = current time

15 end

16 end
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4.4.2. Construction algorithm of one construction iteration

The pseudo-code of the Construct_Solution algorithm is shown in Algorithm 3. In
the first step of the construction algorithm, all passengers p ∈ Pd are placed in a queue

Qp. The passengers are then sorted according to their T dep
p or estimated departure time

ˆ
T dep
p . The latter is determined as following:

ˆ
T dep
p = T arr

p − T tr
p (37)

Here, T tr
p is the shortest travel time to the destination. The passengers are sorted in

order to consider the passenger assignments that are most likely to be feasible first.

The Construct_Solution algorithm then enters a loop in which the planning for each
single bus trip is determined at a time. Each iteration of this loop is denoted as a trip
generation. The loop ends when all passengers p ∈ Pd are assigned to a bus trip. In
each trip generation, the first step is to select the earliest available bus b on trip t,
i.e., the bus trip with the lowest tbdb . Hereafter, we construct a timetable and route
visiting only the mandatory stops. The bus leaves the depot m0 after its available
time tbdb , while still respecting the maximum headway constraints. The exact time
the bus leaves, is determined by construction parameter rhw. The exact mechanism
of the construction parameters is explained in the next section.

Afterwards, we enter another loop in which we attempt to assign as many passengers
p ∈ Qp, that are not assigned to any bus trip yet, as possible to trip t. It needs
to be noted that the number of available seats Cb must not exceed the maximum
capacity C. We denote each iteration of this loop as an assignment iteration. In each
assignment iteration, a passenger p ∈ Pd is considered to be assigned to trip t. In case
p ∈ Pa, i.e., p has not yet been notified of his or her current planning, all the bus stops
within walking time are considered as potential departure stops. Otherwise, if p ∈ Pb,
only the promised departure stop sp of passenger p is considered and the promised
pickup time windows ∆d

p need to be respected. The timetable and route of trip t are
temporarily updated with Update_Route and Update_Timetable. Similarly as in the
Insertion algorithm, the additional cost of assigning a passenger to a bus trip with
a certain departure stop is calculated. If the assignment is feasible, the assignment
with the lowest additional cost is chosen. The Update_Timetable algorithm computes
the minimum time-shift T s

ps that is needed to make an assignment feasible, as well as
the maximum time-shift Tm

fs that still makes the assignment possible. In case that the
assignment is possible without the need for a shift, T s

ps and Tm
ps are respectively the

maximum time that the timetable can shift backwards or forwards without becoming
infeasible. In the Insertion algorithm, the smallest possible shift, i.e., T s

ps, is used.
However, unlike in the Insertion algorithm, the function Update_Timetable in the
Improvement algorithms will use a time-shift shift that lies between T s

ps and Tm
ps. The

exact time-shift is determined by construction parameter rtt. Whether or not a feasible
assignment is chosen, depends on construction parameter racc. The mechanisms of the
construction parameters are explained in Section 4.4.3.

4.4.3. Construction parameters and randomness

Since the Construct_Solution algorithm is greedy, infeasible solutions are possible.
Therefore there is a need to balance the search for a feasible solution and the
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Algorithm 3: Construction algorithm of one solution

1 Calculate Cmin ; // A construction iteration
2 Add all passengers p ∈ Pd to Qp

3 Sort passengers p ∈ Qp according to
ˆ

T dep
p

4 while Qp 6= ∅ do
5 Determine ealiest available bus (lowest tbdb ) ; // A trip generation
6 Initialise route visiting all mandatory stops

7 Initialise timetable with departure time t0b from m0

8 Add route and timetable to trip t
9 for p ∈ Qp do

10 ∆Cmin
p =∞ ; // An assignment iteration

11 sm = −1
12 tm = −1
13 Determine Dsp and Dsf

14 if p ∈ Pa then
15 Sc =

{
∀s ∈ S|Tw

ps ≤ Dw
}

16 else
17 Sc = {sp}
18 end
19 for s ∈ Sc do
20 Temporarily modify trip t with Update_Route(t, s, p, rtt) and

Update_Timetable(t, s, p, rtt)
21 Determine T s

ps

22 if T s
ps ≤ Dsp ≤ 0 or 0 ≤ T s

ps ≤ Dsf then
23 Calculate ∆Cps

24 if ∆Cmin
p > ∆Cps then

25 ∆Cmin
p = ∆Cps

26 sm = s
27 tm = t

28 end

29 end

30 end

31 if sm 6= −1 and ∆Cps−Cmin

∆Cps
≤ racc then

32 Assign passenger p to bus trip tm and bus stop sm
33 Update_Route(tm, sm, p, rtt)
34 Update_Timetable(tm, sm, p, rtt)
35 remove p from Qp

36 end

37 end

38 Update tbdb
39 Add trip t to the solution

40 end
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greediness of the construction. With this goal in mind, three types of construction
parameters are introduced. The value of these parameters is randomly sampled, which
creates variability in the construction process and, in turn, allows the algorithm
to find more feasible solutions as well as solutions with a lower objective function value.

The first construction parameter is denoted as rhw. This parameter determines at
what time a bus leaves the depot m0 when the timetable is first initialised in a trip
generation. This is especially important if there is a bus trip, that is scheduled within
the planning horizon, which does not pick up passengers that made a formal request.
Buses cannot leave before their available time of departure tbdb but also need to leave
early enough to still satisfy the maximum headway constraints at the mandatory stops.
If we denote the latest feasible departure time of bus b as tmd

b and the earliest departure
time as tbdb , then the actual departure time t0b is determined as follows:

t0b =
(
rhw − 1

)
tbdb + rhwtmd

b (38)

Parameter rhw can take on values between zero and one. This means that the
departure time t0b will always depart within the feasible time window

[
tbdb , tmd

b

]
.

The next parameter is denoted as rtt. This parameter is used in each assignment
iteration when the timetable of a trip t is modified to accommodate the assignment
of passenger p with function Update_Timetable. In this function, the timetable often
needs to be shifted a certain amount of time, either forwards in time or backwards, in
order to make the passenger assignment possible. The minimum and maximum amount
of time that the timetable can be shifted, backward or forward, to accommodate
passenger p with departure stop s are T s

ps and Tm
ps respectively. The actual shift T 0n

ps

is then given by:

T 0n
ps =

(
rtt − 1

)
T s
ps + rttTm

ps (39)

Parameter rtt also takes on values between zero and one, which means that the actual
shift is T 0n

ps is always within time window
[
T s
ps, T

m
ps

]
.

The last parameter is racc, the acceptance probability. After a feasible assignment
is determined, there is also a choice whether or not to accept this assignment. It is
possible that accepting a feasible assignment can lead to a worse overall solution or
even an infeasible solution. An assignment is accepted if the following is true:

∆Cps − Cmin

∆Cps
≤ racc (40)

With ∆Cps the additional cost of assigning passenger p with departure stop s to trip
t and Cmin the theoretical minimum additional cost of assigning any passenger to any
bus trip and departure stop. The latter is estimated as one fourth of the maximum
walking timeDw plus half of the minimum travel time from depotm0 to the destination
m|F |−1. The parameter racc takes on values between zero and one as well. This means

that a very good assignment with a lower additional cost than Cmin will always be
accepted and assignments with double or more the additional cost compared to Cmin
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are never accepted. Furthermore, the lower the additional cost ∆Cps is, the more likely
it is to be accepted.

5. Experimental set-up

The instances that are used to evaluate the heuristic’s performance are discussed in
this section. The instances are used for simulations of a real-time operation of the
feeder service during a planning horizon of approximately two hours. A computer
with a Windows 10 Enterprise operating system, an Intel CoreTM i7-8850H, 2.60Ghz
CPU and 16 GB of RAM is used for these experiments. All instances that are used
for the experiments are listed in Table 3. Instances I1 to I34 are randomly generated
instances. The mandatory stop positions are chosen at random and are equidistant.
The optional stops are scattered around a location between the mandatory stops.
Passengers’ positions are chosen at random within a certain radius of the bus stops.
Within a two-hour planning horizon, desired arrival or departure times are randomly
sampled in alternating time intervals. The time at which the passengers make a
request is randomly sampled to be 10 to 30 minutes before they wish to depart. The
instances have different attributes, such as the number of buses |B|, requests |P |
and bus stops |S|. There is one cluster between two mandatory stops, so there are
M = |F |−1 clusters. Furthermore, without loss of generality, each cluster has the same
number of bus stops K. The first half of the |P | passenger requests have desired arrival
times and the other half have desired departure times. To give each component of the
objective function equal importance, all objective weights Wi are given equal weight.
A detailed study of the effect of the weight values on the solutions is beyond the scope
of this paper. We further assume that the maximum values Dtl and Dte for respec-
tively departing later or earlier than the originally communicated departure time T 0

p

to a certain passenger p are equal to each other. We denote this value Dt from now on.

Furthermore, after some trial-and-error, it was determined that the parameters δ1, δ2

and δ3 of the Insertion heuristic will be set to 1000s, 1000s and 750s respectively. These
values give the best results in the shortest runtime. The maximum number of iterations
in the Improvement heuristic is set to 30000, in most cases a larger number of iterations
does not improve the solution significantly, if at all. The maximum amount of time
passengers have to wait to receive a notification about their request is Drt = 300s.
The details of the parameters of the instances, as well as the solutions discussed in this
paper are available in detail online: https://www.mech.kuleuven.be/en/cib/drbp/
mainpage#section-18.

6. Performance of the algorithm

In this section, the results for all the instances that are presented in Section 5 are
discussed. First, the heuristic is run on all the instances in order to assess the quality
of the solutions by comparing them with the solutions obtained by the algorithm
discussed in Section 4.2, which is a similar algorithm to the one used in Galarza
Montenegro et al. (2022b) to optimise a static FSMS. Second, the influence of the
different instance parameters is studied. Lastly, an analysis on the degrees of freedom
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( |B| = Number of buses, |F | = Number of mandatory bus stops,
K = Number of optional stops per cluster, |S| = Number of bus stops,

R = Number of passenger requests,
Df = Maximum headway at the mandatory stops, C = Bus capacity)

Instance |B| |F| K |S| R Df (s) C

I1 6 6 5 31 30 1200 40
I2 6 6 5 31 70 1200 40
I3 6 6 5 31 140 1200 40
I4 6 6 5 31 200 1200 40
I5 6 6 5 31 380 1200 40
I6 6 6 3 31 30 1200 40
I7 6 6 8 31 30 1200 40
I8 6 6 10 31 30 1200 40
I9 6 6 5 31 30 600 40
I10 6 6 5 31 30 1800 40
I11 6 6 5 31 30 2400 40
I12 6 6 5 31 30 1200 10
I13 6 6 5 31 30 1200 20
I14 6 6 5 31 30 1200 30
I15 3 6 5 31 30 1200 40
I16 10 6 5 31 30 1200 40
I17 15 6 5 31 30 1200 40
I18 10 6 8 46 140 1200 20
I19 10 6 8 46 30 1200 20
I20 10 6 8 46 70 1200 20
I21 10 6 8 46 200 1200 20
I22 10 6 8 46 380 1200 20
I23 10 6 3 46 140 1200 20
I24 10 6 5 46 140 1200 20
I25 10 6 10 46 140 1200 20
I26 10 6 8 46 140 600 20
I27 10 6 8 46 140 1800 20
I28 10 6 8 46 140 2400 20
I29 10 6 8 46 140 1200 10
I30 10 6 8 46 140 1200 40
I31 10 6 8 46 140 1200 60
I32 3 6 8 46 140 1200 20
I33 6 6 8 46 140 1200 20
I34 15 6 8 46 140 1200 20

Table 3.: List of test instances
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of the dynamic model is presented.

6.1. Experimental results

The heuristic is used to solve all of the instances that are described in Section 5. The
results are summarised in Table 4. The instances are sorted to identify the instances
that have a single parameter that varies, such as an increasing number of passenger
requests. For example, the first five instances have the same parameters except for
the number of passenger requests, which increases from instance to instance. There
are two sets of instances that have different varying parameters. Each set has one
base instance, namely instances I1 and I18, which is used to create the other instances
where one parameter changes at the time.

From now on we refer to the objective function value that also includes the penalties
as the global objective value. The objective function value that only includes the
accepted passenger requests is referred to as the accepted objective value. The first
column (Inst.) of the table shows the name of the instance, while the second column
(Param.) shows the parameter that changes, along with the values it takes. In the
third column (Global Obj.) of the table, the mean global objective function values
per passenger of 5 simulation runs are given. The solutions of the instances solved
with a static model, i.e., with the assumption that all requests are known beforehand,
are calculated as well. The gap between the static objective function value and the
mean objective function value and the best observed objective function value are
presented in fourth and fifth columns (Mean Gap and Best Gap) respectively. The
sixth column (Acc. Obj.) shows the accepted objective function value per passenger.
The seventh column (IVT) shows the average ratio between the in-vehicle time per
passenger obtained by the algorithm and the best possible in-vehicle time. The latter
is determined by transporting every passenger directly to the destination, with the
assumption that buses need to go to one of the mandatory stops first in order to reach
the main road. In the eight column (WT), the ratio between the average walking time
per passenger obtained by the algorithm and the best possible walking time, i.e., the
walking time to the closest available bus stop, is presented. The columns ∆arr and ∆dep

hereafter show the average difference between the desired and actual arrival time per
passenger and the average difference between the desired departure time and actual
departure time per passenger respectively. These last four columns solely consider the
accepted passengers. The last column shows the average acceptance rate of passenger
requests.

6.1.1. Service quality

It can be seen that the dynamic model heuristic performs quite well for most instances,
having low gaps with respect to the static model. Figure 3 shows an overview of the
average gap of the performance metrics, with respect to the mean values of the five
runs. On average the gap between the mean global objective value and the static
model is 6.5%. The gap between the best observed value and the static model is
4.4%. The gap of the accepted objective value is lower at 0.9%. We must note that
this comparison is not entirely fair towards the dynamic model. In the dynamic
model, there are additional constraints that emerge due to the real-time aspect of
the optimization, such as the promised pickup time windows and previously assigned
departure bus stops. In the static model, all information is known in advance and
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(R = Number of passenger requests, K = Number of optional stops per cluster,
Df = Maximum headway at the mandatory stops, C = Bus capacity, |B| = Number

of buses)

Inst. Param.
Global
Obj. (s)

Mean
Gap

Best
Gap

Acc.
Obj. (s)

IVT WT ∆arr (s) ∆dep (s)
Acc.
rate

I1

R

30 454 3.1% 2.4% 449 1.07 1.05 63 85 99.3%
I2 70 526 7.7% 3.2% 513 1.12 1.19 138 121 98.3%
I3 140 616 11% 4.8% 567 1.20 1.37 167 126 93.3%
I4 200 638 10% 8.3% 584 1.27 1.34 168 127 92.3%
I5 380 684 6.1% 3.0% 597 1.34 1.54 153 136 87.5%

I6

K

3 469 4.0% 0.0% 463 1.08 1.01 94 91 99.3%
I1 5 454 3.1% 2.4% 449 1.07 1.05 63 85 99.3%
I7 8 471 7.8% 6.3% 425 1.06 1.01 44 76 94.7%
I8 10 471 8.4% 5.5% 419 1.05 1.02 46 60 94.0%

I9
Df

(s)

600 645 27% 27% 443 1.11 1.10 118 61 76.0%
I1 1200 454 3.1% 2.4% 449 1.07 1.05 63 85 99.3%
I10 1800 447 1.1% 1.0% 447 1.07 1.03 69 88 100%
I11 2400 480 8.6% 7.6% 452 1.14 1.02 54 86 96.7%

I12

C

10 530 16% 16% 414 1.08 1.04 79 36 86.7%
I13 20 466 5.8% 0.8% 438 1.08 1.04 60 65 96.7%
I14 30 468 5.2% 5.1% 440 1.05 1.01 71 89 96.7%
I1 40 454 3.1% 2.4% 449 1.07 1.05 63 85 99.3%

I15

|B|

3 806 26% 24% 494 1.02 1.40 212 91 60.7%
I1 6 454 3.1% 2.4% 449 1.07 1.05 63 85 99.3%
I16 10 420 3.4% 0.0% 408 1.03 1.01 38 51 98.7%
I17 15 408 3.7% 0.0% 396 1.02 1.02 29 33 98.7%

I19

R

30 405 1.9% 0.2% 405 1.05 1.01 27 53 100%
I20 70 450 2.4% 0.6% 450 1.08 1.13 75 97 100%
I18 140 508 4.2% 2.3% 507 1.11 1.18 128 118 99.9%
I21 200 541 6.1% 2.5% 532 1.18 1.24 147 115 98.9%
I22 380 668 9.6% 4.7% 570 1.27 1.61 158 120 86.4%

I23

K

3 522 2.8% 0.7% 516 1.13 1.14 134 120 99.3%
I24 5 507 2.3% 0.7% 507 1.13 1.20 111 102 100%
I18 8 508 4.2% 2.3% 507 1.11 1.18 128 118 99.9%
I25 10 508 3.8% 1.0% 503 1.11 1.24 115 102 99.4%

I26
Df

(s)

600 513 4.1% 0.1% 507 1.14 1.20 121 103 99.3%
I18 1200 508 4.2% 2.3% 507 1.11 1.18 128 118 99.9%
I27 1800 510 5.7% 4.7% 500 1.12 1.12 130 113 98.7%
I28 2400 515 9.0% 7.7% 504 1.14 1.20 113 112 98.6%

I29

C

10 525 5.3% 0.0% 513 1.15 1.24 125 100 98.4%
I18 20 508 4.2% 2.3% 507 1.11 1.18 128 118 99.9%
I30 40 525 6.6% 5.6% 513 1.14 1.23 118 134 98.4%
I31 60 513 4.8% 3.6% 510 1.12 1.25 128 116 99.6%

I32

|B|

3 888 13% 12% 568 1.15 1.68 113 156 55.4%
I33 6 598 3.4% 1.9% 553 1.21 1.41 132 133 93.9%
I18 10 508 4.2% 2.3% 507 1.11 1.18 128 118 99.9%
I34 15 479 4.8% 4.4% 479 1.12 1.15 97 86 100%

ˆµI1−I34 6.5% 4.4% 1.12 1.18 103 98 95.1%

Table 4.: Results of all instances
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the planning can be optimised accordingly, while in the dynamic model a previously
determined solution needs to be updated when new requests are received. This means
that the static model can only be viewed as a lower bound, and thus not necessarily
as a feasible solution, for the dynamic model.

The average acceptance rate is 95.1%. This is an indication that, on average, a
passenger request has a very high chance of being accepted. However, the static model
has an acceptance rate of nearly 100%, which is why the global objective is higher
than the accepted objective value. Instances with a relatively low number of buses
and instances with low maximum headway Df have larger gaps. These are instances
that have more strict constraints, which leads to a higher number of passengers being
rejected, which increases the global objective value by adding more penalties.

Forecasting the demand of passenger requests could be beneficial for increasing
service quality because it can lead to higher acceptance rates and more foresight
to accommodate the passengers’ needs. For example, we could forecast that in the
near future a certain number of passengers will make a request from a certain area.
The algorithm could then ensure that there are enough buses available by that time
in that area to pick up these passengers. This could be done by assigning certain
already known passenger requests to different buses or bus stops, in order to free
some capacity and/or to shorten the travel time of buses that are scheduled in the
future. This, in turn, ensures that fewer future requests are rejected due to a lack of
availability of buses. However, the low gaps with respect to the static model imply
that forecasting the passenger request demand would not be very beneficial for most
cases. A low gap with the static model implies that the dynamic model is performing
almost as well as the static model. Since the static model is essentially a model
with perfect prediction accuracy, this means any prediction in the dynamic model
would not increase the service quality significantly. However, on certain instances the
forecasting of the demand could prove to be important for increasing the acceptance
rate and the service quality.

The objective function value of the accepted passengers and the global objective ap-
pear to be relatively consistent. The coefficient of variation, which is the standard
deviation divided by the mean, of the global and accepted value are 0.0196 and 0.0144
respectively. On average, the in-vehicle time per passenger is 12% higher than the low-
est possible value, the average walking time is 18% above the lowest possible value and
the average difference between the arrival and departure times is 97s and 93s respec-
tively. On average, a passenger would have a total journey time of around 20 minutes,
which is 15% above the lowest possible journey time of seventeen minutes, and would
depart or arrive approximately one minute and 35 seconds later or earlier than their
desired time. The biggest gaps with the static model are found in the differences of
departure and arrival times. As a trade-off, the in-vehicle times and walking times are
on average slightly better in the dynamic model.

6.1.2. Runtime and response lead time

The average runtime of a single re-optimization varies slightly from instance to in-
stance. On average, the runtime of a re-optimization is 26.4s, which is not a long
runtime. The experiments are run on a normal work laptop, as mentioned above, and
the algorithm is not being parallelised. In practice, the algorithm can be run on a much
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Figure 3.: Average gap of the heuristic with the improvement phase compared to the
static model

more powerful device and the code can be parallelised to further increase the speed.
Furthermore, the iterations for the search in Phase 2 can be reduced in order to obtain
smaller runtimes if needed. In most cases the runtime remains relatively consistent.
However, as can be seen in Figure 4(a), there is a clear correlation with the number of
passenger requests and the runtime. The runtime of a re-optimization increases with
the number of passenger requests until a certain point. When more passenger requests
are obtained, the runtime starts to decrease with an increasing number of requests.
When there is a small number of requests, the algorithm can accommodate the requests
very easily and rapidly because there are many options for inserting the requests in
the solution. When there is a large number of requests, the algorithm does not have
many options for inserting the requests in the solution. This means less options are
explored and the runtime is reduced. The most difficult re-optimizations, and thus
the longest runtimes, are somewhere in between. Furthermore, there is a maximum
amount of time Drt that a passenger can wait for an answer after a request is made,
i.e., the maximum response lead time. When there are too many passenger requests,
these requests get backlogged until the previous requests are processed. Each request
is still processed one by one, which means that the re-optimization is called whenever
a new request arrives. This limits the amount of time the algorithm can devote to
improving the current solution in each re-optimization and thus reduces the average
runtime of a re-optimization. As can be seen in Figure 4(b), the average waiting time
for a request response increases monotonically with the number of passenger requests.
For example, instances with 30 passengers, i.e., most of the instances in the first set
of experiments, have an average runtime of 20.1s and an average response lead time
of 23s. Instances with 140 passengers, i.e., most of the instances in the second set of
experiments, have an average runtime of 32s and an average response lead time of
217s. Instances with more than 140 passengers have an average runtime of 19.5s and
an average lead time of 279.2s.
Figure 5 shows the improvement that is provided by the improvement phase. These re-
sults are obtained by running the algorithm on the instances without the improvement
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Figure 4.: Average runtime and response lead time w.r.t. the number of requests

phase and comparing them with the mean values of the results presented in Table 4.
On average the global objective value improves by 21.2% and the accepted objective
value by 14.4%. The improvement phase also increases the acceptance rate with 5.3%.
These improvements show that the additional runtime of the improvement phase is
justified.
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Figure 5.: Average improvement of Phase 2

6.2. Influence of instance parameters

As previously stated, the results presented in Table 4 are sorted in order to identify the
instances that have a single varying parameter. Two sets of instances are created from
two base instances, namely instance I1 and instance I18. Instance I1 has a low number
of passengers and a relative low number of buses, while instance I18 is a larger instance
with more passenger requests and a higher number of buses. These two base instances
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Figure 6.: Influence of the number of requests on the service quality

are used to create other instances, where a single parameter takes on different values
while the other parameter values remain unchanged. The instance parameters that are
discussed are the following: the number of passengers R making a request during the
planning horizon, the number of optional stops K per cluster, the maximum headway
Df, the bus capacity C and the number of buses |B|. The number of passenger requests
R is an external parameter, while the other parameters are resource parameters that
can be controlled by the service provider.

6.2.1. Number of passenger requests

Figure 6 shows the influence of the passenger requests on the global and accepted
objective value. It is clear that the number of passenger requests has a big influence
on the global objective value. The more passenger requests there are, the larger the
global and the accepted objective values are. This is to be expected, the presence of
more passengers implies that the service cannot be tailored as well to each individual
passenger. The global objective value also worsens with the number of passengers due
to a worsening acceptance rate. The more requests there are, the more likely it is for
a request to be rejected. The gap between the static model and the dynamic model
seems to worsen as well. However, for the set of instances with fewer buses, the gap
improves when more passenger requests are present. This is likely due to the fact that
a very high number of passengers also makes it more difficult for the static model
to optimally plan the service when the number of buses is relatively low. Meanwhile,
the dynamic model’s solution quality remains consistent. This, in turn, makes the gap
improve. As expected, the difference between departure and arrival times worsens the
most. When there are more requests and the vehicle fleet remains the same, it becomes
more difficult to provide a customised service to each passenger where passengers are
picked up and dropped off at their desired times. More requests consequently also
result in longer travel and walking times because buses must travel longer routes.
However, as more passengers are served, this worsening diminishes. After a certain
point, passengers can be serviced more easily in groups, making the service relatively
more efficient.

33



3 5 8 10

Number of optional stops per cluster

420

440

460

480

500

520
V
al
u
e
(s
)

Global Obj., I1
Accepted Obj., I1

Global Obj., I18
Accepted Obj., I18

(a) Influence on the service quality

3 5 8 10

Number of optional stops per cluster

300

320

340

360

380

W
al
ki
n
g
ti
m
e
(s
)

Base: I1 Base: I18

(b) Influence on the walking time

Figure 7.: Influence of the number of optional stops

6.2.2. Number of optional stops per cluster

In Figure 7 (a), the global and accepted function are plotted against the number of
optional stops per cluster. It can be seen that a low number of optional stops worsens
the global objective value. On the one hand, a larger number of optional stops seems to
have a diminishing effect on the global objective value, with seemingly no improvement
at all or even a worsening in the value with a larger number of optional stops. On
the other hand, the accepted objective value consistently improves with an increasing
number of optional stops. The acceptance rate worsens with a larger number of optional
stops. This is likely due to the fact that more optional stops result in longer routes
for some bus trips, which might make it more difficult to make feasible passenger
assignments. The decreasing acceptance rate explains why the global objective value
stagnates after a certain number of optional stops, since rejected passengers contribute
more towards the global objective value. The decline in acceptance rate also explains
the worsening gap with the static model, since the static model is more efficient at
accommodating requests regardless of the number of optional stops. Furthermore, the
static model actually benefits from a larger number of optional stops. The average
departure time difference improves the most, followed by the arrival time difference.
It becomes easier to schedule the departure and arrival of the buses according to the
passengers’ needs when there are more possible departure stops. As can be seen in 7
(b), the average walking time improves significantly as well for the same reason. The
average in-vehicle time of the passengers improves slightly with the number of optional
stops because the routes can be more customised for each passenger. The effect of the
number of optional stops, on all metrics, seems to be less prominent for the set of
instances with a larger fleet size and more requests. It needs to be noted that the ratio
of the walking times reported in Table 4 remains unaffected by the number of optional
stops. When more optional stops are added, the shortest possible walking decreases
as well.

6.2.3. Maximum headway

There is clear difference of how much the maximum headway influences the results
of both sets of experiments, i.e., experiments with base instances I1 and I18, as can
be seen in Figure 8. In the second set of experiments, with a larger number of buses,
the maximum headway has a smaller impact on the results. This is due to the fact
that the presence of more buses during the same planning horizon makes it easier
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Figure 8.: Influence of the maximum headway on the service quality

to satisfy the headway constraints without compromising the global objective value
significantly. Both the acceptance rate and the global objective value are virtually
unaffected by the maximum headway. The other metrics do not change much either,
and any changes can be attributed to the use of different random numbers. The
only notable influence is the worsening in the gap between the static model and the
dynamic model with an increasing maximum headway. This implies that the static
model benefits more from a larger maximum headway than the dynamic model.

In the first set of experiments, with a relatively low number of buses, the influence of
the headway becomes more clear. It is evident that a small headway leads to very low
acceptance rates and thus to an worsened global objective value and gap. The accepted
objective value remains relatively stagnant. It seems that a smaller headway results in
shorter in-vehicle times, with a trade-off for larger differences between the arrival and
departure times. A shorter headway forces the buses to make shorter routes in order
to maintain the frequency of departing buses at the mandatory stops. This improves
the in-vehicle time. At the same time, the shorter routes make it more difficult to
satisfy the desired departure times. Furthermore, the more strict departure times at
the mandatory stops (due to the smaller maximum headway) make it more difficult
to meet the desired arrival times.

6.2.4. Vehicle capacity

Figure 9 shows there is again a clear difference between the two sets of experiments.
On the one hand, the set of experiments with a larger number of passengers and buses
shows that the vehicle capacity does not influence the results much at all. This is
likely due to the fact that the vehicle capacity stays relatively small in comparison to
the number of passenger requests. On the other hand, the set of experiments with a
low number of requests shows a clear correlation between the vehicle capacity and the
results. The results show that a larger vehicle capacity improves the global objective
value and the gap. The acceptance rate also increases to nearly 100% when 20 or more
passengers can be assigned to a single bus. This is to be expected since a larger capac-
ity offers more feasible assignments for the incoming requests. Since more passenger
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Figure 9.: Influence of the vehicle capacity on the service quality

requests are gradually accepted with an increasing capacity, the accepted objective
value worsens slightly. When more passengers are accepted in the service, it becomes
more difficult to lower the accepted objective value per passenger.

6.2.5. Number of buses

Figure 10 shows that the global objective value clearly improves when more buses are
used. The improvement is linear, but appears to be less significant when the number
of buses increases. All performance metrics appear to improve when more buses are
used, although lower walking and in-vehicle times are sometimes sacrificed for smaller
differences in arrival and departure times. The difference in arrival times and the
difference in departure times are the most significant improvements. The in-vehicle
time is the second most significant reduction. This is to be expected because more
buses allow for more personalised service for each passenger; more available buses
allow for more customised routes and timetables. It is evident that the acceptance
rate worsens substantially when not enough buses are utilised. The number of buses
is the resource parameter that has the most impact on the global objective value.
Furthermore, the number of buses is the only resource parameter that improves both
the acceptance rate and the accepted objective value at the same time.

6.2.6. Instance parameters for the best service quality

From the analysis of the instance parameters we can determine the values for the
resource parameters that lead to the best service quality. It can be concluded that
five or more optional stops per cluster, a maximum head way of at least 20 minutes,
a bus capacity of at least 20 passengers and a fleet size of at least six buses lead to
good service quality. Furthermore, it can be noted that a large fleet size is one of the
most important factors for the service quality. When there are more buses available,
other instance parameters influence the service quality to a lesser extent.

In terms of external parameters, i.e., the number of passenger requests, we evidently
see that the service improves when less passenger requests are received.
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Figure 10.: Influence of the fleet size on the service quality

6.3. Influence of the freedom of optimization

In this section we study the influence of the freedom of optimization on the per-
formance metrics. The freedom of optimization refers to how much we allow the
service to be flexible with respect to the real-time decisions it has to make, namely
by allowing passengers to be reassigned to a different departure stop or by increasing
the size of the promised pickup time window ∆d

p . To do this, we select four different
instances to run experiments on. We opt to choose instances I9, I15, I18 and I20
since they have different attributes such as different number of passenger request,
number of buses and different acceptance rates. We discuss the maximum time Dt

for departing later or earlier than the originally communicated departure time T 0
p ,

since this is what determines the promised pickup time window ∆d
p . This is done by

letting Dt take on different values, namely 150s, 300s 600s and 900s. Furthermore we
also solve the instances with an additional degree of optimization freedom; we allow
the reassignment of departure stops to passengers, in case it might be beneficial. The
results of these experiments are summarised in Table 5. The first column shows the
instance that is utilised. The second column shows whether or not the stops that are
assigned to passengers can be changed afterwards. The third column shows the values
of Dt. The remaining columns are the same as the columns in Table 4. Table 5 shows
the mean values of a set of five experiments that are performed with different random
numbers.

Surprisingly, the results for instance I9 show that the global objective value can
worsen when more freedom is given to the optimization of the service, i.e., when Dt

takes on larger values or when existing stop assignments can be changed. However,
the accepted objective value always improves with increasing optimization freedom,
which is to be expected. The worsening of the global objective value is a consequence
of the decreased acceptance rate. More degrees of freedom in the optimization of
the planning leads to a more greedy construction of the timetables and routes. On
the one hand, since the planning is re-optimised as new requests arrive, a more
greedy construction algorithm can lead to solutions that may improve the quality
of the service of passengers already in the service, i.e., the objective value, travel
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Mean
Gap
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Gap
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Obj. (s)

IVT WT ∆arr (s) ∆dep (s)
Acc.
Rate

I9

Yes 150 628 25% 22% 471 1.12 1.12 93 129 80.7%
Yes 300 675 31% 26% 459 1.10 1.11 137 68 74.0%
Yes 600 645 27% 27% 443 1.11 1.10 118 61 76.0%
Yes 900 630 26% 22% 431 1.11 1.10 78 64 76.7%
No 600 689 32% 28% 426 1.09 1.10 74 61 69.3%

I15

Yes 150 871 31% 29% 487 1.06 1.44 126 104 52.0%
Yes 300 886 32% 29% 464 1.04 1.43 97 111 48.7%
Yes 600 806 26% 24% 494 1.02 1.40 212 91 60.7%
Yes 900 832 28% 28% 485 1.01 1.41 211 96 56.7%
No 600 825 27% 22% 452 1.02 1.36 85 110 55.3%

I18

Yes 150 534 8.9% 8.9% 534 1.14 1.15 174 127 100%
Yes 300 540 10% 5.2% 517 1.11 1.24 140 113 97.0%
Yes 600 508 4.2% 2.3% 507 1.11 1.18 128 118 99.9%
Yes 900 508 4.3% 1.7% 502 1.10 1.16 127 119 99.3%
No 600 509 5.5% 2.2% 508 1.11 1.17 136 117 99.6%

I20

Yes 150 463 5.0% 0.5% 460 1.08 1.14 105 94 99.7%
Yes 300 462 4.8% 2.2% 457 1.07 1.17 103 82 99.4%
Yes 600 450 2.4% 0.6% 450 1.08 1.13 75 97 100%
Yes 900 452 2.7% 1.5% 452 1.10 1.12 72 87 100%
No 600 451 2.8% 1.5% 451 1.10 1.10 81 86 100%

Table 5.: Dynamic parameter results

time, walking time etc. On the other hand, the more greedy construction makes the
assignment of new passengers more difficult, which decreases the acceptance rate.
The reason why the static model does not suffer from these downfalls is because all
requests are known beforehand, which allows the model to find a balance between the
greediness and the feasibility of the solution.

The same holds true for instance I15. However, there seems to be an ideal level of
optimization freedom because the best results are observed when Dt = 600s and no
change of the bus stop assignment is possible. In this scenario, the acceptance rate is
higher in exchange for a less ideal service quality for the passengers already in the
service. Because the limiting constraint is a low number of buses in this instance,
a sufficient level of optimization freedom allows the algorithm to schedule the fleet
of buses in such a way that more requests can be accepted. A higher level of op-
timization leads again to a overly greedy algorithm that decreases the acceptance rate.

The remaining instances, i.e., instances I18 and I20, show the same behaviour as in-
stance I15. Again, there is an ideal level of optimization freedom for these instances.
Since the acceptance level of these instances is always very high, the objective values
stop improving significantly after a certain level of optimization freedom. Since the
limiting factor of these instances is the large number of passenger requests, the ser-
vice groups passengers to make the planning more efficient. After a certain level of
optimization freedom is reached, the grouping of passengers yields diminishing returns.
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7. Case study: Antwerp

In order to further validate the usefulness of the dynamic Feeder Service with
Mandatory Stops (DFSMS), we test the service on a case study for a potential
implementation in the city of Antwerp, Belgium. We simulate this case study by
generating instances with the help of REQcreate (Queiroz et al., 2022), which is a tool
designed to generate realistic instances for demand-responsive transportation services.
REQcreate retrieves real-life city networks from OpenStreetMap (OSM) to generate
more realistic instances. The tool also allows the generation of transportation requests,
which can mimic realistic mobility patterns. Figure 11 shows the map segment that
is relevant for the DFSMS. There are eight mandatory stops equidistantly placed
along the N177 highway (blue line), starting in Boom and ending near the centre of
Antwerp (both in red squares). There are 56 optional stops scattered across residential
neighbourhoods near the N177 (green squares), such as Hemiksem, Schelle or Wilrijk.
One hundred passengers requests are sporadically received throughout a planning
horizon of two hours. This represents the demand for transportation of people residing
in the outskirts of Antwerp and waiting to go to the city centre, for example to go to
work. The locations of passengers correspond to realistic origin locations in residential
areas. For this case, we assume that half of the passengers have a desired departure
time and another half have a desired arrival time. To test this instance, we impose a
maximum headway Df of 20 minutes and a vehicle capacity C of 20 passengers. We
study the performance of the DFSMS with different fleet sizes.

We compare the performance of the DFSMS with the performance of existing public
transit options that are currently available in the region. There are more than 20 bus
lines available in the region that can be used by passengers to reach the destination.
This means that the existing transit options utilise more resources, when compared
to the DFSMS. With the coordinates of each passenger, we can calculate their User
Journey Time (URT) to reach the centre of Antwerp using these public transit
services. This URT includes walking time to bus stops and in-vehicle time. The
DFSMS is optimised five times for each case and the mean value is taken.

Table 6 summarises the results of this case study. The first column (Case) of the table
shows the case instance. The first row corresponds with the use of existing public
transit options, while the lower rows represent the DFSMS with different fleet sizes.
The second column (IVT) shows the average in-vehicle time per passenger. In the
third column (WT), the average walking time per passenger is presented. The fourth
column shows the average User Ride Time (URT) per passenger, which consist of the
walking time and the in-vehicle travel time. The columns ∆arr and ∆dep, again, show
the average difference between the desired and actual arrival time per passenger and
the average difference between the desired departure time and actual departure time
per passenger. Column eight shows the accepted objective, and the ninth column
shows the global objective. The last column shows the acceptance rate of the DFSMS.

The acceptance rate in the DFSMS increases significantly with the number of buses.
When the fleet size is only three buses, the acceptance rate is relatively low, at 26%.
As more buses are available, the acceptance rate increases up until a fleet size of
twelve buses. When twelve or more buses are available, the acceptance rate stagnates
at around 90%. This indicates that a fleet size of twelve of more buses is needed for a
high acceptance rate of passenger requests. Figure 12(a) shows the percent difference
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Figure 11.: Map segment in Antwerp for the implementation of the DFSMS
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Case IVT (s) WT (s) URT (s) ∆arr (s) ∆dep (s)
Acc.

Obj. (s)
Global
Obj. (s)

Acc.

Transit 2562 750 1101 1101
|B|= 3 945.5 460 1406 0 287 561 1358 26%
|B|= 6 1370 521 1890 92 148 706 1082 60%
|B|= 9 1488 547 2035 116 125 754 952 77%
|B|= 12 1603 529 2132 106 110 777 872 89%
|B|= 15 1579 526 2106 87 103 759 833 92%
|B|= 18 1552 508 2059 83 100 742 839 89%

Table 6.: Results for case study in Antwerp
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Figure 12.: Influence of the number of requests and the fleet size on the URT

(
∆URT

)
between the URT of accepted passengers in the DFSMS and the URT of the

existing transit options in relation to the number of accepted passenger requests. The
higher this difference is, the better the DFSMS performs comparatively. The URT of
passengers is consistently lower in the DFSMS than in the existing transit options.
When there are less passengers accepted, this difference is larger. This indicates that
the DFSMS outperforms the existing transit options in terms of URT in the case of
both high and low demand densities. Nevertheless, when demand is low, the DFSMS
performs better. Figure 12(b) shows the URT of the DFSMS when rejected passenger
requests are penalised with the maximum URT of the existing transit options (4190s).
It can be seen that the penalised URT clearly decreases when the fleet size is larger.
When nine or more buses are utilized, the DFSMS outperforms the existing transit
options in terms of the penalised URT. When fifteen or more buses are used, this
difference increases to 12% on average. With fewer buses, the small acceptance rate
results in a high penalty cost and the existing transit options are preferred.

When we take the difference in desired and actual arrival/departure times into
account, we are able to compare the accepted and the global objective of the DFSMS
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Figure 13.: Difference in global and accepted objective with existing transit options

with the existing transit options. We assume an average difference between the desired
and actual arrival/departure times of 12.5 minutes for the existing transit options.
This value is chosen because the existing transit options offer a bus departure every
25 minutes on average in the region of this case study, i.e., the average headway is
25 minutes. This implies that passengers depart or arrive, on average, half of this
headway (750s) before or after their desired arrival/departure time. For requests in
the DFSMS that are not accepted, we assume a penalty per rejected request that
is equal to the maximum accepted objective of passengers using the existing transit
options (1637s). Figure 13 shows the percent difference of the global and accepted
objectives between the DFSMS and the existing transit options, in relation to the
fleet size. A higher positive difference indicates that the DFSMS is performing better
in comparison to the transit options. Evidently, the accepted objective is better in the
DFSMS when there are fewer passengers in the system, i.e., when the acceptance rate
is lower due to a small fleet size. With a fleet size of three buses, and an acceptance
rate of 26%, the accepted objective is 96% better in the DFSMS compared to the
transit options. When the Acceptance rate is around 90%, i.e., when the fleet size is
twelve buses or more, the accepted objective of the DFSMS is on average 45% better
than in the existing transit options. The difference in the global objective increases
when more buses are utilised. When three buses are used, the difference is negative at
-18%, which indicates that the existing transit options are outperforming the DFSMS.
When six buses are used, the DFSMS starts to outperform the transit options, with
a difference of 1.7%. A fleet size of fifteen or more buses gives an average difference
of 31.6%.

In conclusion, we can say that the DFSMS is a promising alternative transportation
service for passengers that need to reach the centre of Antwerp and live in the area
displayed in Figure 11. The DFSMS offers a service with lower average URT and with
more customised timetables that better satisfy the needs of the passengers. When the
fleet size is large enough, with twelve buses or more, the acceptance rate is also quite
high at around 90%. Even when we use a large penalty, i.e., the maximum value of the
existing transit options, the DFSMS can outperform the existing options when nine or
more buses are utilised. When we look at the global objective, the DFSMS outperforms
the transit options when six or more buses are utilised. Furthermore, passengers that
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do not make a reservation can still board a bus at the mandatory stops at the N177
and do not need to wait longer than 20 minutes for a bus.

8. Conclusion

This paper makes use of the feeder service with mandatory stops (FSMS), which
was previously introduced in Galarza Montenegro et al. (2022b). The FSMS was
previously optimised with the assumption that all requests are known beforehand,
i.e., the static optimization model of the FSMS. Although not entirely unrealistic, this
assumption limits the flexibility of the service. Furthermore, in a real world scenario
it might be more convenient to allow last minute requests as well. We contribute
to the literature by optimising the FSMS in a real-time manner, where incoming
requests can still be processed even after the buses left the depot. We denote this as
the dynamic FSMS (DFSMS).

To optimise the dynamic model, a novel two phase heuristic with an insertion phase
and an improvement phase is developed. The heuristic is tested on 34 different
instances with different instance parameters, such as the number of passenger
requests, number of buses etc. It is found that the heuristic performs well for most
instances, with an average acceptance rate of 95.1% for passenger requests and an
average gap of 6.5% when compared to the static variant of the FSMS. Experiments
on the different instance parameters show that the number of available buses and the
number of passenger requests per hour affect both the solution quality as well as the
acceptance rate the most. In contrast to the static model, the number of optional
stops worsens the quality of the solutions by decreasing the acceptance rate of requests.

Experiments on the degrees of optimization freedom are performed as well. It is found
that more optimization freedom improves the service quality of the passengers that
have already been accepted by the service. However, in some cases, the global objec-
tive function value can worsen with more freedom of optimization. The additional
optimization freedom can lead to a more greedy heuristic for the already accepted
passengers, which consequently decreases the acceptance rate of later requests.
Depending on the instance, there seems to be an ideal level of optimization freedom,
which provides the best results.

A case study in Antwerp city shows that the FSMS is a promising alternative to
existing transit options in the region. When there are enough resources available, the
FSMS provides a service with 22% lower average user ride times and more customized
schedules that meet the needs of the passengers better. With a large enough fleet size
of twelve buses or more, the acceptance rate is also fairly high at around 90%. When
the objectives of the FSMS and the existing transportation services are compared, the
FSMS performs 31.6% better on average when enough buses are available to achieve
a high acceptance rate.

However, this study still has its limitations and there is still further research that
can be done. First, there is a limited number of cases where there is a large gap be-
tween the dynamic and the static model. Furthermore, it could be seen that there
are diminishing returns when the optimization freedom and the level of flexibility is
too high. This indicates that the heuristic can still be improved. This can be done by
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forecasting incoming demand and adjusting the planning according to this forecasted
demand. Second, passengers that use the service without a reservation are not explic-
itly considered in the optimization of the service. The mandatory stops are a safety
net for these passengers and the use of a capacity for the buses helps in controlling
the crowds. However, the demand for transportation of these passengers is much more
stochastic in nature and thus deserves more attention. Lastly, we use weight factors in
the objective function of both services. This is a good way to improve upon multiple
service quality metrics at once. However, a more detailed study is needed to determine
the best values of these weights. A Pareto analysis or a multi-criteria analysis can be
very interesting in future research.
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