A demand-responsive feeder service with a maximum headway at
mandatory stops

Bryan David Galarza Montenegro*
Department of Engineering Management (ENM), University of Antwerp
bryan.galarzamontenegro@uantwerpen.be

Kenneth So6rensen
Department of Engineering Management (ENM), University of Antwerp
kenneth.sorensen@Quantwerpen.be

Pieter Vansteenwegen
KU Leuven Institute for Mobility - CIB, KU Leuven
pieter.vansteenwegen@kuleuven.be

Data availability statement
The authors confirm that the data supporting the findings of this study are available within the
article and its supplementary materials.

Funding statement
This project was supported by the FWO (Research Foundation Flanders) project G.0759.19N.

A demand-responsive feeder service with a maximum headway at
mandatory stops

Bryan David Galarza Montenegro®, Kenneth Sérensen®, Pieter Vansteenwegen”

¢ Department of Engineering Management (ENM), University of Antwerp, Prinsstraat
18, Antwerp, 2000, Antwerp, Belgium
YKU Leuven Institute for Mobility - CIB, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Viaams-Brabant, Belgium

Abstract

Public transportation out of suburban or rural areas is crucial. Feeder transportation services offer
a solution by transporting passengers to areas where more options for public transport are available.
On one hand, fully flexible demand-responsive feeder services efficiently tailor their service to the
needs of the passengers. On the other hand, traditional feeder services provide predictability and
easier cost control. In this paper, a semi-flexible demand-responsive feeder service is considered,
which combines positive characteristics of both traditional services as well as fully flexible services.
This feeder service has two types of bus stops: mandatory bus stops and optional bus stops.
Mandatory bus stops are guaranteed to be visited by a bus within a certain time interval. Optional
stops are only visited when there is demand for transportation nearby. The performance of this
feeder service is optimized with the use of a new type of metaheuristic framework, which we denote
as Parameter Space Search. Experimental results on small benchmark instances indicate that the
heuristic performs on average 12.42% better than LocalSolver, a commercial optimization solver,
with an average runtime of 2.1s. Larger instances can also be solved, typically within two minutes.

Keywords: meta-heuristics, public bus transport, feeder service, demand-responsive
transportation

1. Introduction

In 2015, 243 billion public transport journeys were made around the world, an 18% increase over
the previous 15 years (Saeidizand, [2017)). Mobility is essential for the development of societies
since it enables accessibility to social activities, goods and services. An efficient and adequate
public transport service is thus crucial in reducing social exclusion and poverty (Hine and Mitchell,
2001} |Agatz et al., 2021)). Furthermore, public transportation can have a positive impact in the
urbanization and infrastructure planning of cities (Agatz et al., 2021)). Although the use of public
transport has increased over the years, there is still a preference for private transport over the use of
public transport (Handy et al.l 2005). This has led to increased pollution, congestion and overfull
parking lots. In order to make public transport a more attractive option, the service quality of
transportation services must increase. For secluded areas in particular, like residential areas and
suburbs, a feeder service enables connectivity to major transit networks. Passengers from typically
sparsely populated areas are transported to areas with a high demand for transportation or to
transportation hubs, where they can continue their journey. These services can be an answer to
the problem of overfull parking lots at transportation hubs and congestion in the surrounding area.

In a feeder service, all passengers have the same destination but different origins. The bus line
in the feeder service with mandatory stops (FSMS) considered in this paper serves two sets of
predetermined bus stops: mandatory stops and clustered optional stops. The mandatory stops are
visited by each bus in the bus line and have a maximum allowable headway, i.e., these stops are

Preprint submitted to Networks June 13, 2023

visited by a bus within a certain time interval. The optional stops are only visited by a bus when a
passenger nearby makes a request for transportation. Passengers make a request for transportation
to the transportation hub, by stating their current location and the time they wish to depart or
their desired arrival time at the hub. Passengers are assigned to a departure bus stop, where they
have to walk to. It is assumed that passenger requests are known before a certain deadline. After
this deadline, the operation of the service for the planning horizon is determined and cannot be
modified further. In other words, all passenger demand is assumed to be static. However, this
means that the routes and the timetables of the buses are not completely fixed but can be modified
according to the received requests.

The main contribution of this paper is the design of a new semi-flexible demand-responsive feeder
service. The FSMS can be a good alternative to both traditional transportation services and fully
flexible transportation services because it offers positive characteristics of both types of services.
The mandatory stops are a good way to meet demand that did not made an explicit request for
transportation and provide a sense of predictability for all passengers (both passengers with and
without a reservation). Optional stops and online requests offer a more customized experience to
passengers that have explicitly made a request. Furthermore, |Beirao and Sarsfield Cabral (2007)
show that rather than waiting time, the uncertain arrival time of transport is of most importance,
i.e., the reliability of the service. Attributes such as comfort and arrival time at the destination
are also highly valued by passengers. These are attributes that the FSMS is designed to improve
upon, which means that the FSMS can be a viable alternative to private transport. This paper also
introduces the Parameter Space Search (PSS) heuristic, a new type of metaheuristic concept. PSS
executes an underlying constructive heuristic multiple times with different heuristic parameters.
An overlying local search heuristic, we use simulated annealing for our problem, aims to find the
best possible parameter values in the parameter space of the underlying constructive heuristic. The
results obtained by the heuristic prove that good quality solutions are obtained within relatively
small runtimes.

In the next section, a literature review on public transport feeder services is presented. In Section
we present a detailed description of the FSMS and a mathematical model to optimize the service.
Section [4| presents the PSS heuristic, which is developed to solve the optimization problem. Section
analyses the performance of the PSS heuristic in order to fine-tune its parameters. In Section
[0, the results for several instances, obtained by solving the problem using the PSS heuristic, are
presented and discussed. In Section |7 the influence of different instance parameters on the service
quality is analyzed and discussed. The last section concludes the paper and discusses plans for
future research.

2. Literature Review

The feeder service with mandatory stops (FSMS) that is presented in this paper is an extension
of the demand-responsive feeder service (DRFS) presented in |Galarza Montenegro et al. (2021))
and |Galarza Montenegro et al.| (2022). In the DRFS, a fleet of buses transports passengers from a
suburban area to an area with high demand for transportation, such as a train station. The DRFS
receives requests from passengers until a certain deadline before the first bus is dispatched. Each
request states the passenger’s location and desired arrival time at the destination. There are two
sets of bus stops. Mandatory stops are always visited by each bus, while optional stops are visited
if there is a demand for transportation nearby. (Galarza Montenegro et al. (2021) solve larger in-
stances with a Large Neighborhood Search (LNS) heuristic, while Galarza Montenegro et al.| (2022])
solve smaller instances with an exact method. The main contributions of the FSMS, with respect
to the DRFS in (Galarza Montenegro et al. (2021 and |Galarza Montenegro et al.| (2022)), are as

follows: the service now needs to guarantee that a bus departs from each mandatory stop within a
certain time interval, the return trip of the buses is now explicitly considered and passengers can
now state a desired departure time as well. These additions make the optimization of the service
substantially more complex and improve the quality of the service. To the best of our knowledge, no
other research has studied the FSMS presented in this paper or the DRF'S in |Galarza Montenegro
et al] (2021) and Galarza Montenegro et al.| (2022)). Nevertheless, closely-related types of services
have been considered in the literature and will be discussed in this section.

Traditional feeder services (TFS) have predetermined stops, routes, and timetables. In these TF'S,
the demand is considered to be known and is often derived from historical data. As such, these
services result in feeder lines that perform well in terms of satisfaction of demand, and waiting
time. The Feeder Bus Network Design Problem (FBNDP) is often tackled for TFS. The FBNDP
determines the design of a set of feeder bus routes, as well as the service frequency of each route for
a period of time (Martins and Pato, 1998). |Ciaffi et al. (2012]) solve the FBNDP using a heuristic
algorithm to generate routes, together with a genetic algorithm to find the best possible network
of routes and their frequencies. This solution approach is implemented for the networks of Win-
nipeg and Rome. [Lin and Wong| (2014) present a multi-objective programming approach to solve
the FBNDP. In this study, the route length and the maximum route travel time are minimized,
while the service coverage is maximized simultaneously. This model is used for a case study of a
metro station in Taichung City, Taiwan. Mohaymany and Gholami (2010) consider a FBNDP with
multiple transportation modes, each mode with different capacities and performances. Ant colony
optimization is used to solve the optimization model. Zheng et al. (2020) introduce a “demand
coefficient” to quantify the feeder demand and use a tabu search algorithm to optimize the design
of the feeder network. The optimization approach is implemented in a downtown area of Suzhou,
China. Often, the main objective while optimizing these services is to minimize travel times of
passengers and transfer times to the main transit. Shrivastava and O’Mahony| (2007) use a genetic
algorithm combined with a specialized heuristic to optimize the routes and the timetables of a TF'S.
In a different study, Shrivastava and O’Mahony| (2006]) use a genetic algorithm to optimize both
the routes and the timetables simultaneously.

Traditional feeder services have clear shortcomings, such as lack of accessibility and flexibility. In
these services, it is difficult to accommodate the different needs of the passengers, such as de-
sired arrival time or departure time. Furthermore, it is inconvenient for some passengers, such
as children, disabled, or senior passengers to reach one of the limited number of bus stops served
by traditional feeder lines (Mistretta et al., 2009). These limitations have contributed to the rise
of demand-responsive transportation services (DRTS). DRTS are bus services that do not op-
erate using fixed routes and timetables, and take into consideration the individual demand for
transportation. Consequently these services are better able to deal with sparse and ever-changing
demand (Alonso-Gonzalez et al., [2018)). DRTS usually require passengers to make explicit requests
for transportation in order to gain information about their needs. Some well-known DRTS are
the Dial-A-Ride (DAR) problem (Wilson, [1971)), the Mobility Allowance Shuttle Transit Service
(MAST) (Quadrifoglio and Dessoukyl, [2004]), the Demand-Responsive Connector (DRC) (Lil [2009))
and the Customized Bus (CB) (Liu and Ceder} 2015). The DAR service improves the accessibility
of transit services by offering a door-to-door service to passengers that make a request with their
desired pickup and drop-off locations. [Sun et al. (2018) present a mixed-integer linear program-
ming model for a demand-responsive feeder service similar to a DAR problem. The model is solved
using a heuristic algorithm and is used in a case study in Nanjing City, China. In a MAST service,
vehicles have a fixed set of bus stops that they always need to visit, e.g. a fixed path, and these
stops also have fixed timetables. However, the vehicles may deviate from the fixed path. The
customers that are served outside of the fixed path are served at their desired location and need to

be within a certain radius from the fixed path in a so-called “zone”. This service combines the high
flexibility of door-to-door services with a fixed main route. This concept has been applied to feeder
services as well. |Lu et al| (2015) developed a three-stage heuristic algorithm to optimize such a
problem, together with a bus assignment sub-problem. Furthermore, Qiu et al. (2015) analyzed a
feeder service similar to a MAST service, which has been implemented in Salt Lake city in the USA.
In the DRC, no mandatory stops are considered and buses transport passengers from their origin
location to transfer hubs within a predefined service area. (Quadrifoglio and Li (2009) and |Li and
Quadrifoglid (2010a)) both present analytical and simulation models to help service providers choose
between a fixed feeder service and a DRC, depending on operational circumstances. Passengers
are able to notify their presence by means of a phone or Internet booking service. Immediately
before the beginning of each trip, waiting customers are scheduled and the route for the trip in the
service area is constructed. In the CB, an origin area is connected to a destination area with an
express service and mostly dedicated lanes. However, the routes inside both areas are flexible. |(Guo
et all (2019) develop a CB service, and use an exact model with time windows similar to the DAR
problem. The solution includes intermediate stops where passengers can transfer to other lines
and systems. The model is implemented in a case study in Beijing, China. The study compares
the branch-and-cut results with a genetic algorithm (GA) and a tabu search (TS) algorithm. A
different type of service is presented in |Crainic et al.| (2005)) and (Crainic et al.| (2012). The service
in both studies is a stop-based transportation system which they refer to as a class of demand-
adaptive systems (DAS). In these systems, flexible routes are created for passengers that make a
request for transportation, while the buses still serve mandatory stops at fixed schedules. At first,
a master scheduling partially defines routes and time windows. Later, the actual schedule of each
service is built to include optional stops. Requests can be rejected if they make the tour infeasible
or unprofitable.

DRTS typically have more success in low demand areas with a sparse population, while TF'S thrive
in high-demand and densely populated areas. When and where to use which feeder service is further
discussed by [Li and Quadrifoglio (2010b)). The study shows that flexible feeder services perform
better with lower demand rates and become progressively preferred when more importance is given
to the walking time of the passengers.

Vansteenwegen et al.| (2022)) present a recent and extensive survey and categorize DRTS into differ-
ent groups. The transportation services are divided based on the degree of responsiveness; “static”
when the planning is determined before a certain deadline and no changes are possible afterwards,
and “dynamic” when the planning can be modified when new incoming requests are received. An
example of static planning is the service in Lee and Savelsbergh (2017). The study considers a
DRC to minimize operator costs, considering the time window for pickups and drop-offs. The
authors consider the train frequency at the station and use these time windows as parameters of
the operation. This allows the service providers to select the best operation period for servicing
passengers. The authors use both a heuristic and an exact model to optimize the service before
the start of operation, after which the planning is fixed. An example of dynamic planning is the
service presented in Fu and Liul (2003). The authors implement a real-time scheduling model with
dynamic stop skipping. The model optimizes the schedule of the vehicles just before departure from
the depot. This makes modifications to the planning possible before the dispatching of the vehicles
but not after. [Vansteenwegen et al.| (2022) denote this responsiveness as “dynamic offline”. More
responsiveness can be found in the service presented by |Pratelli et al. (2018). The service starts
from a standard route and deviates from it when a request is made. Each route has a minimum
and maximum number of deviating stops. Requests are received in real-time and each bus can
change its planning at any time, even after the start of operation. This type of responsiveness
is denoted as “dynamic online”. The services are further distinguished by the level of flexibility.

On one hand, “fully flexible” services have no fixed routes or timetables. Services like the DRC
or a DAR service are fully flexible because there is no aspect that remains constant regardless of
the demand. On the other hand, “semi-flexible” services have predetermined planning that can be
modified in order to meet the needs of the passengers. Services such as the MAST service or the
Customized Bus are semi-flexible. For example the MAST service has a main route that all buses
need to visit regardless of the demand, but buses can deviate from it to pick-up passengers. Our
FSMS is classified as a static semi-flexible feeder service.

Vansteenwegen et al.| (2022) review 151 papers related to DRTS, out of which 43 papers study a
feeder service. It was concluded that many feeder services operate using small vehicle capacities;
many papers use a vehicle capacity of 10 passengers or less, and only a few use a capacity of 40
passengers or more. Almost half of the papers that study flexible feeder services do not consider
a limited vehicle capacity at all. Moreover, excluding the DRFS, only three papers consider semi-
flexible feeder services with a limited capacity (Kim and Schonfeld, 2013| [2014, Lakatos et al.,
2020). In all three papers the capacity is 19 passengers or less.

Furthermore, the planning of flexible feeder services is often optimized with metaheuristic frame-
works or other simple heuristics (Vansteenwegen et al., 2022). There are papers that utilize exact
techniques, however, these methods are only used to find optimal solutions to be used as bench-
marks for evaluating heuristic solution approaches. The only papers that solely use exact methods
are Pratelli et al. (2018]), Chien et al.| (2001)), Melachrinoudis et al.| (2007), Wang et al. (2018]),
Zheng et al. (2018)), Lakatos et al.| (2020)) and [Mehran et al. (2020). In these cases, the instances
are considered relatively small.

To solve the optimization problem of the FSMS, we introduce the Parameter Space Search (PSS)
heuristic. In the PSS heuristic, an underlying constructive heuristic is executed multiple times with
different construction parameters. An overlying local search heuristic operates on the parameter
space of the constructive heuristic in order to find the construction parameter values that lead to the
best solutions. The PSS heuristic is similar to a Greedy Randomized Adaptive Search Procedure
(GRASP) (Resende and Ribeiro, |2007), where solutions are iteratively constructed with a greedy
randomized algorithm and consequently improved. The difference between the PSS and GRASP is
that, on one hand, the solutions constructed with GRASP are improved with local search in each
iteration. On the other hand, the PSS heuristic uses local search to find the best construction pa-
rameters for the underlying construction algorithm. Unlike the GRASP, the PSS heuristic utilizes
information of previous construction iterations to improve upon the solution. Therefore, the PSS
heuristic as a whole can be viewed as an online automatic parameter fine-tuning procedure. This is
similar to the F-race (Birattari et al 2002), the Iterative F-race procedure (I/F-race) (Balaprakash
et all, |2007, Birattari et al., 2010) and the Heuristic Oriented Racing Algorithm (HORA) (Bar-
bosa and Senne, 2017). All of these methods automatically tune the parameters of optimization
algorithms with the use of machine learning techniques, more specifically with racing approaches
(Maron and Moore, 1997). The difference is that the PSS heuristic uses local search rather than
machine learning to automatically fine-tune the parameters of a greedy construction algorithm.
Other parameter tuning procedures have utilized metaheuristics to fine-tune optimization algo-
rithms as well. Population-based heuristics have been used to fine-tune optimization algorithms
(Grefenstette, [1986), |Ansotegui et al., 2009 [Yuan et al., 2012). In such cases, individuals repre-
sent parameter configurations and an evaluation method for each configuration corresponds to the
fitness function. Similarly, Hutter et al. (2014) make use of Iterated Local Search (ILS) to solve
the parameter tuning problem, while |Caceres and Stiutzle (2017) employ Variable Neighborhood
Search (VNS). However, all of the mentioned parameter tuning procedures are a preliminary step
that is taken once, before the optimization algorithm starts. Unlike these procedures, the parame-

ter tuning in the PSS is an integral part of the optimization algorithm.

The optimization model of the FSMS shares some characteristics with the Vehicle Routing Problem
with Time Windows (VRPTW). In the more general Vehicle Routing Problem (VRP), a set of cus-
tomers, who are geographically dispersed, are served by a set of vehicles. The vehicles have a limited
capacity and are dispatched from a central depot. The goal is to find the optimal routes to serve
all customers with the available vehicles (Clarke and Wright, 1964)). In the VRPTW, customers are
only available during a certain time period, which imposes time window constraints for arrivals at
the customers’ location. Braekers et al.| (2016) review 277 papers that study a version of the VRP.
It is concluded that the vast majority, namely 71.3%, of the papers optimize the VRP with the use
of metaheuristics. Exact methods are utilized for 17.1% of the models. The remainder of the models
are solved with other solution methods. It was also found that 90.5% of the papers consider a lim-
ited vehicle capacity and 37.9% study a VRPTW. Most of the VRPTW are solved with the use of
heuristics. [El-Sherbeny| (2010) and Dixit et al.|(2019) give an overview of the literature on VRPTW.

The vehicles in the VRPTW visit a node that is the location of a customer, while passengers can-
not decide on the bus stop they are assigned to in the FSMS. The optimization algorithm of the
FSMS, which takes into account a maximum walking duration, determines this. Furthermore, all
nodes in the VRPTW are bound by a departure time window. This is not always the case with the
FSMS, because some passenger requests specify a preferred arrival time at the destination, impos-
ing only a time window constraint at the final node of the route. In the FSMS, the itinerary is also
partially predetermined. The FSMS also has a maximum headway at mandatory stops, which in-
fluences vehicle scheduling and routing even more. This headway constraint also makes routes and
timetables of different bus trips interdependent, which complicates the search for a feasible solution.

The FSMS resembles the feeder service variant of the MAST service and the DAS the most. Our
feeder service has a fixed route where it can deviate from, just as in MAST and DAS services. The
main difference is that MAST services provide a door-to-door service to some customers within a
certain radius, while our service assigns and groups passengers at a limited number of bus stops.
DAS work with bus stops, but there is no bus stop assignment involved and the walking times of the
passengers are not considered. Bus stop assignment increases the efficiency of the bus assignment
and the routing. The timetable for the fixed route is also preset and cannot be changed in MAST.
In DAS, buses must depart from the stops in the fixed route within certain time windows. This
limits the time the buses in DAS or MAST can devote to deviating from the main route. Our
service is more flexible, while still guaranteeing that at least one bus departs from mandatory bus
stops within a certain time frame. Furthermore, the difficulty of satisfying the preset timetable
at the mandatory stops in DAS and MAST is alleviated by allowing requests to be rejected. In
our service, all requests must be accepted. This makes it more difficult to find feasible solutions.
Finally, DAS and MAST are mostly optimized on small scale instances or the problem is divided
into subproblems to reduce the complexity of the optimization model, which can lead to optimal
solutions of lesser quality. Very few papers aim to solve MAST or DAS as an integrated problem
as we will do in this paper.

3. Problem Description

In this section, the feeder service with mandatory stops (FSMS) is described in detail. First,
the service is explained and the setting of the problem is determined. Next, a mathematical
optimization model is defined in more formal terms.

3.1. Description of the feeder service with mandatory stops (FSMS)

The FSMS is situated in an area with low demand for transportation, such as a suburban area. The
bus lines of this service are designated shuttle buses that bring the inhabitants of this low demand
area to a transportation hub or to a nearby city center, i.e., the destination for all passengers is
the same. In the rest of this paper, a single bus line is considered because all bus lines in the
FSMS are operated independently, assuming they each have their own area to cover and no bus
stops are shared by different lines. The bus line is operated by a fleet of vehicles, i.e., there are
multiple buses with different schedules that travel along the same line. The buses serve two types
of bus stops: mandatory stops and optional stops. Each bus visits all mandatory stops and these
stops have a maximum allowable headway, i.e., at least one bus must depart from each mandatory
stop within a certain time interval after the previous bus. This means that passengers that did not
make a formal request for transportation, waiting at mandatory stops do not need to wait longer
than a certain amount of time for a bus. It should be noted that this is more strict than having a
certain number of buses per hour. The optional stops are only visited when demand is assigned.
Passengers are assigned to a departure stop that they have to walk to. This assignment takes into
consideration a maximum walking time for each passenger. The mandatory stops can, for example,
be placed along a main road. The optional stops are grouped into different clusters. Typically, the
optional stops in a cluster will be relatively close to each other and scattered across a small town
or neighborhood close to the main road on which the mandatory stops are located. Each cluster
is located between two mandatory stops. The buses always start at the first mandatory stop and
end at the last mandatory stop, this is denoted as a “trip”. A bus route can deviate from the route
along the mandatory stops and visit some optional stops in a cluster. From a cluster, the bus can
travel to the next mandatory stop, to an optional stop in the same cluster, or to an optional stop in
a next cluster. After a bus has reached the last mandatory stop, it goes back to the first mandatory
stop following the shortest path without serving any stops. Afterwards, this bus can be reused for
the next trip.

The service must serve a certain number of passengers during a planning horizon, which is typically
a few hours. A passenger demands a ride online, through a website or a phone application, in
which they state their starting location and their desired arrival time or their desired departure
time. For a feeder service it might be more likely that passengers request a desired arrival time,
however, there might also be passengers who prefer a desired departure time. Therefore, the ad-
ditional option to request a desired departure time makes the service more complete. Passengers
immediately get a reply that their request will be scheduled and that they will soon receive more
details (departure stop and time), so they can start walking towards their departure stop well in
time. The service receives requests until a certain deadline, for example, one or two hours before
the first bus is dispatched. After all requests are received, the route of each bus is optimized for
the whole trajectory and the passengers are notified regarding the departure time of their bus and
which bus stop they should go to for their journey. After the planning is determined, the timetable
of the buses at the mandatory and optional stops is known and shared publicly. Passengers that
did not make a request, but that are aware of this timetable information, can catch a bus at the
mandatory stops or the optional stops being serviced. Passengers that are not aware of the re-
quest service or the timetable information can still catch a bus at the mandatory stops with a
guaranteed (low) maximum waiting time. Passengers that did not make an explicit reservation
before the deadline cannot make a request afterwards. Therefore, these passengers are not explic-
itly considered in the optimization procedure, which only takes requests into account. However,
these passengers can still go to a mandatory stop to board a bus, without the need for a reservation.

A small example of the FSMS is shown in Figure In this example, a single bus is utilized for
two trips, i.e., bus trip A and bus trip B, to serve 13 passengers. Each passenger needs to arrive at

the destination or depart from a bus stop within a certain time window. Bus trip A serves eight
passengers, while bus trip B serves five passengers. There are six mandatory stops, labeled mg to
ms. The first mandatory stop is the start of the route of each bus trip, while the last mandatory
stop is the destination. Between two mandatory stops there is a cluster containing six optional
stops. The clusters are labeled ¢; to c¢5. The positions of both the mandatory and optional stops
is predetermined. Whether or not an optional stop is visited depends on demand nearby. The
main route, i.e., the fastest route from the start to the destination that solely visits the mandatory
stops, is shown as a dashed line. The bus deviates from the main route to pick up passengers. If
an optional stop is visited by a bus to pick up a passenger, it is colored black. Otherwise it is
shown as a white circle. Passengers are assigned to a bus trip and to a bus stop. This assignment
is shown as a dotted line between a passenger and a bus stop visited by a bus on a trip. In cluster
c4 on bus trip B, it can be seen that two passengers are assigned to the same optional stop, even
though that bus stop is not the closest stop to them both. This is done to reduce the travel time of
the passengers onboard the bus on trip B in order to reduce the objective function further and/or
to make the solution feasible. After all, a solution can become infeasible if a passenger does not
arrive at the destination within their desired time window. This can occur, for example, because
their bus visits too many stops and takes longer to reach the destination. After the bus on trip A
reaches the destination, it is sent back to the start in order to be reused again for the subsequent
trip, i.e., bus trip B. Figure [1] also shows the timetable of the buses on the mandatory stops. This
timetable is not fixed but depends on the demand for transportation. For example, the bus on trip
A takes longer to travel from mj to mso than from ms to ms3 because it needs to pick up passengers
in cluster co. By comparing the departure times of both bus trips it is clear that a bus departs
at each mandatory stop in a time-interval of 30 minutes or less. In this example, the maximum
headway or the maximum time interval between bus departures at mandatory stops is 30 minutes,
which makes this solution feasible. Furthermore, it needs to be noted that after the bus arrives
at the last mandatory stop on trip A, the bus needs 10 minutes to reach the first mandatory stop
to start trip B. The time it takes for the bus to return to be reused for the next trip needs to be
considered to obtain a feasible solution.

3.2. Assumptions

To simplify the problem to some extent, the following assumptions are made. Passengers are as-
sumed to be traveling alone. A group of passengers that want to travel together can make a set of
identical requests, i.e., the same origin location and desired arrival time or departure time. How-
ever, it is not guaranteed that all passengers will be assigned to the same bus.

The DRFS is designed for a single bus route, assuming that none of these bus stops are shared across
bus lines and transfers between bus lines are not considered, as is customary for feeder services. We
assume the service is used to transport passengers from a rural or suburban area to a high demand
area. In such cases, only a limited number of bus lines are present. In the case of multiple lines,
a passenger located between two lines could easily be assigned first to one of the lines by a simple
algorithm, and afterwards, the planning of the line can be determined. The service provider could
also let the passenger choose which line is better suited. Furthermore, |[Vansteenwegen et al.| (2022)
show that the majority of studies concerning feeder services solely optimize one bus line at a time.
For example, Wei et al.| (2020) optimize a fully flexible feeder service and apply this to a real life
case in Chongqging China, where a single transportation hub is fed by three different neighborhoods.

The assumption that the requests are known beforehand is not far-fetched since services have been
implemented under these conditions before. An example of such a service is the “Belbus” from De
Lijn (the Flemish regional transportation company) in Belgium (DeLijn} [2021)), a DAR service that

Start

Legend Timetable
. Bus stop Bus trip A Bus trip B
. Mandatory stop —»— Bus trip A — 10:00 10-30
@® Optional stop (visited) —>— Bus trip B T 10:04 10:34
my 10:10 10:37
O Optional stop (not visited) — ------- Main route m; 10:12 10:39
nl . .
A Passenger Cluster 4 10:17 10:42
ms 10:20 10:46

Figure 1: Example of the FSMS

allows passengers to make a request for transportation until one day before operation. Another
example is the flexible feeder service in Salt lake city in the USA (Qiu et al., 2015)) that requires a
request for transportation before the service starts. Depending on the circumstances, a service that
accepts real-time requests can be preferable, but the planning of such a service is left for future
research.

It is possible that the service can be overcrowded in the case that there are too many passengers
without a reservation. Capacity constraints for passengers with a reservation help to control the
crowding of these passengers, which can alleviate crowding in general. Furthermore, crowding can
be controlled by using “artificial capacities”, which are smaller capacities than the actual capacity,
in order to limit the number of reservations for a certain time period in the case we expect a larger
number of passengers without a reservation. The number of passengers without a reservation at
each mandatory stop can be estimated with the use of historical data. A probability distribution
for the arrival of passengers without a reservation at mandatory stops can be defined with the use
of this data. Part of the capacity that is reserved for passengers without a reservation can then be
defined as the mean value plus a certain number of standard deviations. This is the same principle
that is used in inventory control in warehouses, where certain storage remains unused for a period
of time with the expectation that inventory levels will rise in the future. An alternative would be to
give priority to passengers that make a reservation and only allow passengers without a reservation
if it is sure that passengers with a reservation can have a place on the bus.

Furthermore, it needs to be noted that the planning is considered “static” but not “fixed”. This
means that the routes and timetables of the buses are determined before the first bus starts, for a
certain period of time. However, the routes and timetables will vary from period to period based on
requests in each period. It also needs to be noted that a scenario where passengers leave from the

same place but have different destinations, can be optimized as well with the methods presented
in this paper without a larger amount of effort. However, we opted to focus on the opposite sce-
nario for this paper instead, i.e., where all passengers have the same destination but different origins.

Later on, we also make the optimization problem subject to a constraint that ensures all passenger
requests are accepted. It should be emphasized that the constraint of accepting all requests is
introduced to make the algorithm more efficient. The alternative would be to work with a penalty,
which introduces its own difficulties since the value of this penalty is difficult to determine. In
practice, the service requires that requests are submitted by a specific deadline. If a certain number
of requests result in insufficient capacity, service providers have time to increase the number of
dispatched buses in order to still provide a feasible solution. If expanding the fleet size is not
possible, the algorithm must be run without the most recent requests, which implies these requests
are rejected. Requests could then be prioritized in a First Come First Serve manner.

3.3. Mathematical optimization model

In this section, we discuss the mathematical optimization model of the FSMS. Table [I| gives an
overview of the variables, parameters and sets that are used to describe the mathematical model.
The reasoning behind the parameter and variable notation is as follows. All variables and param-
eters are written in dtalics. Variables are in lower case, whereas parameters are in upper case.
The superscript refers to a descriptive characteristic of the parameter or variable and is written in
standard text format (not italic). The indices are referred to by the subscript.

The objective z of the mathematical model is to minimize a weighted sum of different components
related to the service quality. The parameters W; are weights given to each component of the
objective function and can be determined by the user. The first component calculates the
onboard travel time of all passengers. The second component minimizes the walking time of
each passenger from their origin location to their assigned departure bus stop. It needs to be
noted that passengers are not always assigned to their closest bus stop. The passenger-bus-stop
assignment determines which bus stops are chosen for the passengers in order to reduce the overall
objective function value. For example, the travel times of the buses can increase significantly if all
passengers are assigned to their closest bus stop. In that case, it might be more efficient to group
passengers and assign some passengers to their second or third closest bus stop. The remaining
components determine the differences between the desired arrival and departure times and the
actual arrival and departure times of the passengers.

Min

2= |3 (ap - dy) (1)

peP

+ Wa Z Z Z Z 1Yot (2)

beB teJ ieS peP

+ Z (Wga}nate + W4a;arly+> 4 Z <W5d;oate + W6d§arly> (3)
pePl pGPQ

The first group of constraints deals with the routing of the buses. Constraints ensure that, for
the mandatory stops, exactly one arc enters or leaves. Constraints (b)) ensure that, for all other
bus stops, at most one arc enters or leaves any stop. If an arc enters the stop, there must be an
arc leaving the stop and vice versa @ The only exceptions are mg, where exactly one arc leaves

10

Sets

B Set of buses
J Set of all possible trips of a bus
O Set of optional bus stops
F Set of mandatory bus stops
S Set of all bus stops: S = FUO
P Set of passengers with a desired arrival time
P Set of passengers with a desired departure time
P Set of all passengers using the service during the planning horizon: P = P U P
Parameters
K. | Number of optional bus stops in cluster ¢
M | Number of clusters
thj Travel time from bus stop ¢ € S to bus stop j € S
T}‘j{ Walking time of passenger p € P to departure bus stop i € S
1™ | Desired arrival time of passenger p € P at the destination bus stop m p|_;
TS P | Desired departure time of passenger p € P, at their assigned departure stop
7% | Amount of time needed to travel from mg to mp|_;
TP" | Planning horizon for optimization
Df | Maximum headway at the mandatory stops
DY | Maximum value for individual walking time
D2 | Maximum value for arriving late
D | Maximum value for arriving early
DY | Maximum value for departing late
D*d | Maximum value for departing early
C Capacity of the buses
W; | Relative weight given to objective function component i
Decision Variables
- 0-1 variables determining if bus b € B, on his ' trip, visits bus stop j € S immediately
bij | after visiting bus stop i € S
0-1 assignment variables which assume value 1 if passenger p € P is assigned to
Iebti | hus b e B , on his " trip, and to departure bus stop i € S
ap Arrival time of passenger p € P at destination bus stop m p_
dp Departure time of passenger p € P at their assigned departure stop
d3,; | Departure time of bus b € B, on its ' trip, at stop i € S
a;,ate ap — T"™ when passenger p € P is late
af,aﬂy T3 — ap when passenger p € Py is early
d}fte d, — T; » when passenger p € P, is late
df)arly T{,j P — d,, when passenger p € P, is early
t‘bit Time at which bus b € B, on its t** trip, is available for departure at stop myg
Sopi Difference between the departure time of bus b € B on its ¢/ trip at stop i € F

and the departure time of the next bus

Table 1: Notation for the MIP

11

and none enter, and mr|_;, where exactly one arc enters and none leave. Constraints and
constraints ensure that no bus ever has stop mg as a successor or stop M|p|—1 as a predecessor.

> i =1 VieF, beB, teJ (4)
JES

> api; <1 VieObeB, teJ (5)
jes

Zwbtilzzﬂ%tli VieSyn-_1, beB, teJ (6)
les les

> wpio =0 VbeB, teJ (7)
€S

> wpn-1i =0 VbeB, teJ (8)
i€S

A second group of constraints deals with capacities or threshold values. Constraints @ ensure that
no passenger needs to walk for a longer time than a predefined maximum value DV, this is important
for the passenger-stop assignment. Similarly, constraints ({L0|) ensure that any optional stop that is
farther away than a mandatory stop to a passenger, is not considered as a possible departure stop
for that passenger. It needs to be noted that both sets of constraints can be dealt with as an input,
ie., if T > min <Dw,minkep Tgﬁ) then ypp; =0,V pe P, i€ S, be Bandtec J. Constraints
regulate the number of passengers on each bus, so that buses cannot transport more passengers
than a given capacity. Constraints (12 to ensure that all passengers arrive and depart within
the required time window. It must be noted that parameters D', D®d. D12 and D can be chosen
by the service provider. Setting one of these parameters to a value of zero transforms the desired
arrival/departure time of the passengers into the earliest or latest arrival/departure time.

Toiyppti < D™ VpeP icS beB, tcJ (9)
Tﬁypbtiﬁggngi VpeP, icO, be B, tcJ (10)
Sy <C VbeB, teJ (11)
peEP ieS

a;)ate < Dk, aze)arly < D& ¥pePr (12)
dite < pM, gesrly < ped ¥ pe P (13)

Constraints 1’ and 1) define the decision variables af;arly, a;,ate, d]ef”ly and d}?te as positive
deviations between the actual arrival or departure time and the desired arrival or departure time
of the passengers. Given the objective function, in each set of constraints, one of the two variables

will be zero for each passenger p in the optimal solution.

" —ap+ a;,ate - af,aﬂy =0 Vpe P (14)
TP — dy + di* — ™Y = 0 V pe P (15)

Constraints and define the variables d, and a,, the departure time and the arrival time
of a passenger p, respectively.

If yppti = 1 then d, = dyy; VieS beB, telJ pe P (16)
If > ypoti = 1 then a, = diyypy_, VbeDB, ted peP (17)
€S

12

Constraints to define the variables dj,, and tgt. Furthermore, buses are not allowed to
depart from the first mandatory stop, on any trip ¢, before their available departure time tgt. These
constraints ensure that a bus stop is not served later in time than a following bus stop in the route.
This makes subtour elimination constraints unnecessary.

bt > T VobeDB, ted (18)
thy = diy_in_y + T VbeB, teJy (19)
If wpi5 = 1 then dyy; = dyy; + T} Vi€ S, j€So, beB, teJ (20)

Constraints (21)) to (22)) ensure the amount of time between two consecutive buses departing from
a mandatory stop does not exceed Df. These constraints model the maximum allowable headway
at the mandatory stops. We denote them as the headway constraints from now on.

Ot < djy; — dyyi VIi#beB, d#teJ, be Bg, t€Jy, i € F' (21)

St < D' VbeBp, t€Jdy, icF (22)

Lastly, constraints ensure that every passenger is assigned to exactly one bus on a trip and
one departure bus stop.

DD upmi=1 VpeP (23)

beB teJ €S

Constraints ensure that optional stops are visited when there is at least one passenger assigned
to the optional stop.

Ifzypbti>0then beitlzl VieO, be B, teT (24)
peEP les

The remaining constraints determine the domains of the variables.

Ypoti € {0, 1} VbeB, tcJ beB, peP (25)
Ty € {0,1} VbeB, teld i€S, j€S5 (26)
Ay Obti € RT VbeB, tel ieS (27)
e RT VbeB,, teJ (28)
ap, a;)a&:? a;arly e %4- v pe Pl (29)
d,, dlpate7 dgarly c Rt Vpe P (30)

The number of possible trips |J| can be calculated as follows. The maximum number of round trips
one bus is able to perform, assuming it only visits the mandatory stops, is the planning horizon
TPM divided by the time needed to make such a round trip, i.e., 2. The maximum number of
trips each bus can make is then:
TPh
= | 37| (31)

2TSI‘

The linearized version of constraints , , and are given in [Appendix Al

4. Solution approach

In this section, solution methods to solve the optimization model of the feeder service with manda-
tory stops (FSMS) are described. First, the model is solved using a commercial solver, namely
LocalSolver. Then, a metaheuristic is presented.

13

4.1. Commercial solver

In order to provide a benchmark for the results that are presented in Section [6] the optimization
model is solved with a commercial solver, namely with LocalSolver. This solver makes use of local
search heuristics and exact optimization techniques to solve the mathematical optimization model
defined in Section This means that the solutions that are given by this solver are not guaran-
teed to be optimal. However, solutions obtained by LocalSolver are expected to be of good quality.
These benchmark solutions are subsequently used to assess the quality of the solutions obtained by
the heuristic described in Section

LocalSolver is chosen over an exact solver such as CPLEX or Gurobi because the heuristic local
search techniques allow it to find good quality feasible solutions in a relatively short time. This is
crucial for a problem as complex as the optimization problem of the FSMS. The performance of
LocalSolver has been tested against Gurobi for the optimization of the Capacitated Vehicle Rout-
ing Problem with Time Windows (CVRPTW), a relatively similar optimization problem to the
FSMS (Blandamour, |2022)). It is found LocalSolver consistently outperforms Gurobi, especially in
instances of a larger scale. Therefore, it can be expected that the results of LocalSolver will be of
good quality for the FSMS as well.

Additionally, in order to model the problem in LocalSolver, some constraints are implemented
differently compared to the model presented in Section The solver allows us to model list-
variables, which are arrays in which each element appears at most once (and that can therefore
have a variable length). Each route of each bus on a certain trip can be modeled as an ordered
set of bus stops with an undetermined length, i.e., a route is a list variable. This improves the
speed of finding good feasible solutions significantly with the use of LocalSolver. Furthermore,
no big-M constraints are needed since LocalSolver allows us to model ‘if-then-else’ constraints
directly. Preliminary results indicate that the implementation of the mathematical model that uses
list-variables and ‘if-then-else’ constraints in LocalSolver leads to the best solutions.

4.2. Heuristic

In this section, the heuristic that is used to optimize the operations of the FSMS is explained. The
main outline of the heuristic is explained first. This is followed by a more detailed explanation of
the different components of the heuristic, namely the construction algorithm of a complete solution,
the construction parameters and the local search algorithm.

The heuristic developed in this paper follows what is, to the best of our knowledge, a new meta-
heuristic concept which we call Parameter Space Search (PSS). The main idea is to use a con-
structive heuristic that is executed multiple times with different heuristic parameters to generate a
diverse set of solutions, and combine it with a randomized local search heuristic that operates on
the parameter space of the constructive heuristic. The local search heuristic attempts to discover
the values for the parameters of the underlying constructive heuristic that result in the best solution
quality. PSS is related to parameter tuning heuristics (like F-race, etc.), but differs from it in that
it is an integral part of the optimization algorithm rather than a step to be executed before the
algorithm is used.

The reason why the PSS heuristic is developed is because the optimization problem of the FSMS is
quite complex. We also consider this type of heuristic as a methodological contribution that may
serve to inspire others. The optimization of the FSMS involves different interdependent decisions.
This problem can be viewed as an integration of a vehicle routing problem, an assignment problem,
and a highly constrained timetabling problem. All passengers are assigned to a bus and to a

14

departure bus stop, taking into account the maximum walking time and their preferred departure
or arrival time. The routing of each bus needs to be determined based on the optional bus stops
that are assigned to passengers and that are selected for each bus. Furthermore, a bus must
arrive within a time interval at each mandatory stop and buses need time to return to the first
mandatory stop in order to be reused for a next trip. All these decisions are intertwined and
affect one another. In particular, bus trips cannot be determined independently from each other
since the headway constraints can only be respected by determining the timetable of all bus trips.
All these complexities make it very difficult to find feasible solutions. By iteratively constructing
new solutions from scratch, the PSS heuristic overcomes the complexity of the interdependency
of bus trips. The semi-randomness of the PSS heuristic offers a good way to bring variability in
the construction of bus trips and increases the chance of finding more feasible solutions and higher
quality solutions.

4.2.1. Main outline of the heuristic

The outline of the Parameter Space Search (PSS) heuristic is shown in Algorithm |1} The heuristic
constructs a complete solution in each of its iterations 7, which we denote as construction iterations.
A complete solution serves all passengers and consists of a set of buses that make a number of trips.
A bus trip corresponds to the journey of a bus from the starting point to the destination. Since
buses return to the starting point to be reused, a single bus can have several trips. The construc-
tion of a complete solution in each construction iteration ¢ is denoted as Construct_Solution in
Algorithm [I] Construct_Solution contains, among others, the generation of many bus trips. The
generation of a single bus trip consists of assigning passengers to a bus b on a certain trip ¢ and
constructing its route and timetable. The generation of a bus trip is denoted as a trip generation.
This trip generation is explained in more detail in Section When no more bus trips can be
scheduled within a certain planning horizon, the solution is complete and Construct_Solution
ends.

The construction algorithm Construct_Solution, in iteration ¢, is greedy because it aims to con-
struct the best routes, timetables and assignments for one bus trip at a time regardless of the next
bus trips. This means that there are instances where the resulting solution is infeasible because
not all passengers are assigned to a bus. Due to the tight constraints of the optimization model,
infeasible solutions can often not be restored to feasibility without constructing the solution from
scratch again. For this reason, these infeasible solutions are discarded. The PSS heuristic executes
N3P construction iterations, after which the best solution, i.e., the solution with the lowest objec-
tive function value, is kept. If no feasible solutions are found after N5'°P construction iterations,
the instance itself is considered to be infeasible. An assumption of the FSMS is that all passengers
must be served. This might, of course, lead to infeasible solutions if the capacity of the system
is insufficient to serve all passengers. In such cases, the decision maker can relax this constraint,
and, for example, attempt to find the solution with the most passengers served. Such alternative
formulations of the FSMS, with different constraints and objective function are, however, left for
future research.

To bring more variance into the construction of the solutions, construction parameters are intro-
duced. These parameters guide Construct_Solution and bring a balance between the greediness
and the feasibility of the construction algorithm by determining whether or not a certain passenger
is assigned to a bus trip. This allows the algorithm to find more solutions with a better objective
value or to find more feasible solutions for “difficult instances”, i.e., instances where it is difficult to
find feasible solutions due to strict constraints. The mechanism of these construction parameters
is further explained in Section

15

Algorithm 1: Main outline of the PSS heuristic

cm.

)

// See |4
// See [4.

NN
N W

, .-, 7™ in the neigborhood of the incumbent

// See |4.2.4
// See |4.2.2

// See m

// See
// See

11=1
2 while i < N5'*°P do
3 if no feasible solution found then
4 Search randomly for feasible construction parameters r°', ..., r
5 Incumbent solution = Construct_Solution(rcl, ... r™) :
6 Incumbent construction parameters rPt, ... rP™ gl pem
7 else
8 Sample construction parameters !
construction parameters r°!, ... rP™
9 Candidate solution = Construct_Solution(rel, ..., rc™) :
10 if new solution is feasible then
11 AFE = objective function value candidate solution - objective function value
incumbent solution
12 if AF <0 then
13 Incumbent solution <— candidate solution
14 rPl Mo el pem
15 else if exp(#) > Uniform(0,1) then
16 Incumbent solution <— candidate solution
17 rPL P el pem
18 end
19 Update temperature T" according to a cooling schedule ;
20 t++
21 end
22 end
23 end

24 Return incumbent solution

16

The values of the construction parameters are randomly sampled until values that lead to a feasible
solution are found. Afterwards, these values are changed for each construction iteration i, which
leads to different solutions in each construction iteration i. The goal of the PSS heuristic is then
to find the best values of the construction parameters. This is done with local search, and more
specifically with Simulated Annealing (SA). As a result, the different construction iterations are
not independent, since valuable information about the construction of a good solution is used to
construct the next solution. The local search is further explained in Section [4.2.4 The local
search is also used to automatically fine-tune the parameters of the underlying greedy construction
algorithm.

4.2.2. Construction algorithm of one construction iteration

The pseudo-code for the construction algorithm Construct_Solution is given in Algorithm [2] in
Appendix Bl together with the pseudo-code of the associated functions.

Preprocessing Before the start of the construction algorithm, the route BR is determined. This
is a route that is constructed with the aim of minimizing the total travel time of a bus that visits all
bus stops. This route is constructed in order to insert additional optional stops in the best possible
position in existing routes later on, when bus trips are generated. First, an initial feasible route is
constructed and afterwards it is improved with a 2-opt procedure. The initial route is constructed
by adding all the mandatory stops first and then arbitrarily adding optional stops between the
mandatory stops. The 2-opt algorithm implemented here is a first-improvement algorithm, and
selects two edges of the existing route and swaps them if and only if the objective function value
is lowered by this swap. This procedure is done once before the start of the first construction
iteration.

Initialization In the first step of a construction algorithm, the passengers with a desired arrival
time T3 are placed in a queue Q* and are sorted according to their T"". Passengers with a desired

departure time T;i P are placed in a queue Q9 and are sorted as well. Later on, passengers are
considered for a bus assignment in the order of queues Q* or Q4. The queues are sorted according
to the desired arrival or departure times of the passengers because passengers with comparable
desired arrival and departure times are more likely to benefit from being assigned to the same bus.
The first available departure times tbd of each bus b are set to the start of the planning horizon in
order to have initial feasible departure times.

Loop of trip generations In the second step, the construction algorithm enters a loop, in which
bus trips are generated. We denote each iteration of this loop as a trip generation. In each trip
generation, the earliest available bus b, i.e., the bus with the lowest tlc)l, is considered. The variable
t,‘f is dynamically updated in each trip generation. This means a different bus is considered in
each trip generation. The number of trip generations is not known beforehand and depends on the
parameters of the instance, such as the number of passengers or the fleet size.

In each trip generation w, that considers bus b on trip ¢, an initial route for bus b is created, in
which all the mandatory stops are visited. An initial timetable is constructed as well, in which the
bus leaves as soon as possible, i.e., at time tg. This route and timetable are subsequently updated
as a passenger p is assigned to bus b on trip ¢t. For each trip generation u, the passengers in either
Q* or Q4 are considered. To determine which queue is considered, the earliest desired arrival time
T? of Q* and the earliest expected arrival time 79 of Q9 are determined. The latter is calculated
as the smallest T;,i P plus the time it would take to go from mg to mp|—1 by only visiting the
mandatory stops. If 7% < T4 and Q® is not empty, the passengers from Q? are considered first.

17

Otherwise, if 7% > T9 and Q9 is not empty, the passengers from Q9 are considered first. This is
done in order to address the most urgent requests first. In both cases, passengers are iteratively
added to the bus trip as long as capacity constraints are still feasible and while the queue is not
empty. After the timetable and the route of bus b on trip ¢ is determined, the timetable can be
modified to accommodate additional passengers from both queue Q* and queue Q<. This is done
with three construction parameters and is explained in more detail in Section When no more
passengers from a queue can be assigned to bus b on trip ¢, the trip generation u ends and the next
bus is considered.

In case ()* is considered, the function Best_Stop_a is used to determine the best possible de-
parture stop s for the current passenger p from queue @?. This is done in a manner similar to
the Pilot Method metaheuristic framework (Vo8 et al., [2005), where better solutions are found by
looking ahead to see which possible choice worsens the objective the least. In our heuristic, the
best departure stop s is determined by calculating the additional cost of each feasible departure
stop and choosing the departure stop with the lowest cost. The additional cost is the sum of two
factors: the additional travel time that the bus needs to travel to reach the bus stop, and the
walking time of the passenger walking to the bus stop. A bus stop is feasible if it is within D¥
walking time. Furthermore, if adding a departure stop to the route makes the headway constraints
or the desired arrival time window constraints infeasible, the bus stop is not feasible either. If there
are no feasible bus stops available, the passenger is not assigned to the bus. If there exists a feasi-
ble departure stop, then the best feasible departure stop is assigned to passenger p on bus b on trip ¢.

Afterwards, if the departure stop is not part of the route already, the route of the bus is updated
with function Update_route. This is done with the help of the route BR, the highly efficient
route that visits all bus stops, determined during preprocessing. The departure bus stop s is
inserted in the current route depending on where s is placed in BR. For example, if BR is
[mo, 09, 01, M1, 02,03, M2, the current route is [mg, my, ms] and we wish to insert bus stop og in
the current route, then it should be inserted between m; and ms because that is the most similar
placement of 09 in BR. By updating the route in this manner, we can assure that the route remains
efficient, without the need to perform heavy time consuming improvements on it. Since part of the
route is fixed, this method of updating the route yields good results.

After the route is updated, the timetable is updated with Update_timetable. Since the differ-
ence in the desired arrival time 7" and the actual arrival time, i.e., the departure time d|p|_y
at mandatory stop m p|_1, is a sum of absolute deviations, the median, in this case the median
of the desired arrival times of the passengers onboard the bus, minimizes this sum. However,
an additional constraint is that the solution must be within the interval [LBy, U Bp], which is de-
pendent on the desired arrival times. Whenever the median is larger than U By, the arrival time
will be set to UB,. When the median is smaller than LB, the arrival time will be set to LB;.
The correction of the arrival time still gives the best possible solution since ZP\T;” — dip|—1] is
a convex function of djp_;. If the resulting departure times of the bus at the mandatory stops
make the headway constraints infeasible, the arrival time can be adjusted in order to satisfy the
constraints. If it is still not possible to satisfy both the passenger time window constraints and
the headway constraints, the passenger is not assigned to the bus. If the arrival time adjustment
results in the bus leaving the first mandatory stop before the bus is available for departure, the
arrival time can be corrected as well. In case this is in conflict with the other constraints, the
passenger is not assigned to the bus either. Whether or not these last two timetable adjustments
take place depends on the construction parameters, this is explained in more detail in Section [4.2.3]

In case Q9 is considered, the function Best_Stop_d is used to determine the best possible de-

18

parture stop for the current passenger. This function determines the best stop in the same way as
Best_Stop_a, however, the difference in desired and actual departure time of the passenger is also
added to the additional cost of the potential passenger-bus stop assignment. This is done because
for passengers in @9, the departure stop affects the difference in departure times. Moreover, there
are additional restrictions present. Bus stops cannot be visited before the previously inserted bus
stop in the current route. This is because the passengers are added to the bus according to an
ascending Tg P which means that each subsequent passenger wishes to depart at a later time. For
example, assume that passenger p; wishes to depart at a later time than passenger pg, but p; is
assigned to a bus stop that is visited before the departure stop of pg in the current route. The
bus is then forced to pick up passenger pg before passenger p; due to the departure time window
constraints. However, the departure bus stop of pp is visited before the departure time of pg, which
makes this passenger-bus assignment inefficient due to backtracking or even infeasible in most cases.
In some cases, such an assignment might be possible. For example, if the departure bus stops of
both passengers are close to each other and the maximum allowable time to depart earlier than
the desired departure time is large enough for the bus to drive from one stop to another. How-
ever, this is not a likely scenario and such an assignment is quite inefficient, thus it is not considered.

If the bus cannot possibly arrive at a bus stop within the desired departure time window of the
passenger, the bus stop is infeasible for this passenger-bus assignment. The headway constraints
and the bus departure constraints from the first mandatory stop are taken into account in the same
manner as in the function Best_Stop_a. If there are no feasible bus stops available, the passenger
is not assigned to the bus. If there are feasible bus stops, the route and the timetable are updated
with Update_route and Update_timetable. The function Update_timetable determines the me-
dian of the T;i P of the passengers onboard.

The loop with all trip generations stops only if the departure time of the current bus at the last
mandatory stop is outside of the planning horizon or if all passengers have been assigned to a bus
trip.

Initialization for the next construction After all possible passengers are added to the bus,
the bus becomes available for the next trip and the earliest available time t‘g of the bus is updated.
The new t‘g is calculated as the arrival time at mp|_; plus the time 7" that the bus needs to reach
the first mandatory stop again. If no passengers are assigned to a bus, the bus will be empty and
it will visit all mandatory stops in order to fulfill the headway constraints.

4.2.3. Construction parameters

The construction algorithm in Section is greedy, which can lead to infeasible solutions. The
construction algorithm can be too greedy by, for example, optimizing the routes and timetables of
the first 20 passengers without taking into account the remaining requests. As a result, passengers
that are already processed in the algorithm are provided with a good service. However, the remain-
ing requests cannot be processed anymore, for example, because there are no more buses available
at the right time. Therefore there is a need to balance the search for a feasible solution and the
greediness of the construction. With this goal in mind, several sets of construction parameters are
introduced.

An overview of the construction parameters is shown in Table This table shows what each
construction parameter determines and when in the algorithm this takes place. The table also
shows the range of values each parameter can take. Two of these parameters are used during the
generation of a bus trip, while the others are used after each bus trip generation. These parameters
are further explained in more detail.

19

Parameter ‘ Range ‘ Determines ‘ When?
rd [0.5, 1.0] Maximum headway for bus trip generation u During the generation
rl [0.0, 1.0] Maximum timetable adjustment for feasibility of a bus trip
ry [0.0, 1.0] | Maximum walking time for additional passengers .
rsf [0.0, 1.0] Maximum forward timetable shift Afte;ft;ij:iiauon
T (0.0, 1.0] Maximum backward timetable shift P

Table 2: Overview of construction parameters

The construction parameters have an index u, which refers to a trip generation. This is the trip
generation where the current bus b is dispatched on trip ¢ and for which the construction algorithm
is determining the planning. For example, © = 1 can refer to bus b =0 on trip t = 1 and u = 2
refers to the next bus that is dispatched, e.g., bus b = 5 on trip ¢ = 0. Each set of construction
parameters has N*d number of elements. This number corresponds with the number of bus trips
that are needed in each construction iteration and depends on how the solution is constructed. In
each construction of a complete solution each set is unique. To illustrate this, the values of rf for
two different construction iterations ¢ and ¢ + 1 are shown in Figure Each bar in the figures
corresponds to the construction parameter i, of the set rf, on trip generation u. It can be seen
that in construction iteration 4, the set rf has N'@ = 20 elements while in construction iteration
i+ 1 it has 21 elements. Furthermore, the values of each element in each set fluctuate from bus trip
to bus trip. These parameters can be viewed as variables of a function that constructs a complete
solution and the variables that lead to the best solution need to be determined.

1001 o B 1001 M
80 =1]] sof] 7
X 601 || O H =X 60 - 1
L L
= a0 = a0
201 H 201 H
R]! L IR
0 5 10 15 20 0 5 10 15 20
rf r!
(a) Values for rf on construction iteration 4 (b) Values for rf on construction iteration i 4 1

Figure 2: Values of the set rf for two different construction iterations

The construction parameter rl is used to determine the maximum allowable time Dgt between the
departure of bus b on trip ¢ and the previous bus at any mandatory stop. This is simply done
by multiplying the maximum allowable time D! with rd, the resulting product is then Dit. The
parameter 70 can take values between 0.5 and 1.0. This means that Dgt < D! for all buses and
trips, and Dlﬁt is unique for each bus trip. Limiting the headway constraint further to a different
extent for each bus separately allows the construction algorithm to increase the number of different

solutions it can create by bringing more variability to the construction.

With each passenger-bus assignment there is a choice to adjust the timetable to either make the
headway constraints feasible or to make the departure times feasible or both. Whether or not these

20

adjustments take place depends on the construction parameter rf

.- The construction parameter
ri can take any value between 0 and 1. The feasibility ratio R’ is the percentage between the
ideal cost increase of adding passenger p to bus b on trip ¢, e.g., the cost increase if there were no
headway constraints or passenger departure time window constraints, and the current feasible cost
increase. If r is smaller than feasibility ratio Rf, the passenger is not assigned to the bus. In case
the passenger is not accepted for this assignment, the passenger is still considered for an assignment
in the next bus trip generation. If there are no more bus trips available, the passenger is accepted
regardless of the feasibility ratio. This is a way to balance the feasibility and the greediness of the
construction. Since 7!, is different in each construction iteration, this can lead to different solutions

in each construction of a complete solution.

During the trip generation both the route and timetable are gradually constructed from scratch.
After a trip generation, only the timetable can be modified to accommodate additional passengers
from both queue Q* and queue Q9. This is done with the last three construction parameters 3, rsf
and /. To accommodate more passengers, the maximum amount of time D*P that the buses can
depart earlier in time than originally planned, or the maximum amount D% that buses can depart
later in time, is determined. The desired arrival or departure times of the passengers onboard
and the headway constraints together create feasible time windows for the departure of the bus at
each bus stop. We can then create two lists L! and L", containing the differences in time between
the current departure time of bus b and respectively the lower and upper bound of the feasible
time window of each visited stop. The parameters D% and D' are then the minimum values of
respectively L! and L". Adding an additional passenger p, makes the timetable shift T, amount of
time in order to make the assignment feasible. Here, T} can be negative or positive. A passenger p
is assigned to the bus if the following conditions are satisfied. Firstly, if 7} is negative, the absolute
value needs to be lower than 73’ DP. Secondly, if T » 1s positive, then it needs to be lower than
r$f D!, Lastly, the passenger cannot walk more than 7' DV amount of time to their assigned bus
stop and their assigned bus stop must already be part of the route. The parameters 5, r5f and
ry, are construction parameters and can take values between 0 and 1. These parameters limit the
number of additional passengers that are added to a bus, i.e., passengers added after the trip is
generated. This increases the greediness of the construction by only accepting assignments with
a certain ideal level of quality. Reducing the maximum walking time, for example, leads to more
greedy solutions since we only accept the more ideal assignments that lead to less walking time.
This provides more variability in the construction of a complete solution, which leads to better
solutions and a larger number of feasible solutions.

4.2.4. Local Search for construction parameters

In the previous section, various construction parameters are used in order to guide the construction
of a single complete solution. In this section, the local search algorithm that is implemented to find
the best values for these parameters is discussed. For the remainder of this section, we refer to the
construction parameters r4, rf, P st and % as variables and a set of values for these variables

as a solution.

The local search framework that is used in this paper is the framework of Simulated Annealing
(SA). The main idea behind SA is allowing occasional uphill moves to avoid entrapment in poor
local optima. The search starts from an initial feasible solution, i.e., an initial value for each
construction parameter. Each solution has a specific objective function value. A small change in
one or several variables can generate a neighboring solution with a different objective value. The
neighboring solution is generated by randomly sampling different variables in the neighborhood
of the incumbent solution. If the cost value of the candidate solution is better than that of the
incumbent solution, a move to the candidate solution is made. However, if the candidate does not

21

improve the incumbent solution, there is still a chance of transition. The probability of accepting
such an uphill moves is modeled with the Boltzmann distribution exp (#) , with AF the difference
in objective function value between the candidate and the incumbent solution and 7" the current
temperature. In practice, if a randomly chosen number between zero and one is smaller than this
Boltzmann factor, an uphill move is accepted. The temperature typically is given a high value at the
start of the search, in order to move out of local minima. Afterwards, the temperature is decreased
according to a cooling schedule, which decreases the probability of accepting an uphill move as the
algorithm continues. In the literature, there are several types of cooling schedules, categorized into
classes such as monotonic schedules, adaptive schedules, geometric schedules and quadratic cooling
schedules. In this paper, we consider the cooling schedule presented by |Azizi and Zolfaghari (2004]).
A traditional cooling schedule, such as the geometric decrease of the temperature, is useful if the
local minima are near the start point. However, this may not lead to a near optimal solution if
some local minima are encountered at a relatively low temperature towards the end of the search.
Azizi and Zolfaghari (2004) propose an adaptive SA method that takes into consideration the
characteristics of the search trajectory. In this method, the temperature can be increased and
decreased depending on the trajectory of the search. The following temperature control function is
used:

T, =T™" + An (1+6) (32)

Here,) is a coefficient that controls the rate of temperature rise, 7™ is the minimum value that the
temperature can take and ¢; is the number of consecutive upward moves at construction iteration
i. The initial value of §; is zero, thus the initial temperature Ty = T™". More concretely, §; is
given by:
bi—1+1 AE>0
0; = < 8i_q AE =0 (33)
0 AE <0

The rationale behind this approach is that downhill moves are more common in the beginning of
the search, which means that there is less need for a high temperature to push the search out of
local minima. However, as the search continues, the chance of getting trapped in a local minimum
increases. Therefore, a high temperature that could move the search out of local minima is needed.
Another benefit of this method is that the search continues for a predetermined number of con-
struction iterations N°P and does not freeze if the computational time is extended. In our case,
NSYP refers to the number of feasible construction iterations.

The variables that are used to construct the first feasible solution are randomly sampled until a
feasible solution is found. The consecutive candidate solutions are sampled in the neighborhood of
the incumbent solution. Each element of each set of the candidate variables is sampled with a normal
distribution with a mean value p equal to the current variable value, and with standard deviation
0. The latter is a parameter of the SA local search and determines the size of the neighborhood
we look for candidate solutions. Furthermore, there are many possible solution compositions since
there are many variables that constitute a solution. The local search may require a large number
of construction iterations to provide good quality solutions because a large portion of the solution
space needs to be explored. In order to limit the generation of infeasible solutions, we do not
re-sample all variables in each construction iteration of the PSS heuristic. Instead, a subset of the
variables remains the same, i.e., the values of these variables remain the same as in the previous
construction iteration. For example, the sampling of a candidate variable rﬁ’f, i.e., the new value
of rf, in the next construction iteration, in trip generation u, is then given by:

of Normal (rquf, 0) rfjf € R°¢
(34)

Tw otherwise

22

With R€ the set of variables randomly chosen to be changed and T‘Z’f the incumbent variable of 7.
It needs to be noted that sampling the variables with a normal distribution can lead to instances
where the variables take invalid values. In such cases, the value of the variable is reset to the
closest valid value. The number of variables |R¢| that are changed in each construction iteration,
the neighborhood size o, the coefficient A and the minimum temperature 7™, are parameters of
the SA and need to be fine tuned. This is done in the next section.

5. Experimental set-up

In this section, the instances that will be used to evaluate the performance of the Parameter Space
Search (PSS) heuristic are discussed. Afterwards, the best parameters for the local search are
determined. The heuristic is run on a computer with a Windows 10 Enterprise operating system,
an Intel Core™ i7-8850H, 2.60Ghz CPU and 16 GB of RAM.

5.1. Instances

To test the PSS heuristic, different instances are used. Instances I7 to I15 are benchmark instances
that are solved with LocalSolver as well. The positions of the mandatory stops are chosen arbitrarily
and are equidistant. The optional stops are scattered around a location between the mandatory
stops. The positions of the passengers are randomly chosen within a certain radius of the bus stops.
The passenger desired arrival or departure times are randomly sampled in alternating time-intervals
within a planning horizon of four hours. All instances are listed in Table [C.4] in [Appendix C| The
instances have different attributes, namely the number of buses |B|, the number of requests |P|,
the number of bus stops |S|, the maximum headway at the mandatory stops Df (in minutes) and
the vehicle capacity C. There is one cluster between two mandatory stops, so there are M = |F|—1
clusters. Furthermore, without loss of generality, each cluster has the same number of bus stops
K. The first half of the | P| passenger requests have a desired arrival times and the other half have
a desired departure times. All the objective weights W; are given equal value, in order to give
each component of the objective function equal importance. A detailed study of the effect of the
weight values on the solutions is beyond the scope of this paper. The details of the parameters
of the instances, as well as the solutions discussed in this paper are available in detail online:
https://www.mech.kuleuven.be/en/cib/drbp/mainpage#section-8.

5.2. Fine-tuning local search parameters

The parameters of the local search need to be fine-tuned in order to ensure that the heuristic gives
good quality results consistently within a short amount of time. For the remainder of this section,
a representative subset T'S® of 15 of these instances is selected. These instances are indicated in
bold in Table

For each of the instances in T'S?, the heuristic is run with different values of each local search
parameter. To reiterate, the local search parameters are: the number of variables |R| that are
changed in each construction iteration, the neighborhood size o, the coefficient A and the minimum
temperature 7™". Different local search parameter values result in different objective function val-
ues and different runtimes. Only one parameter is changed at a time, in order to isolate their effect
on the results. However, even with the same set of parameter values, different objective values may
result from the heuristic, due to the randomness of the algorithm. To obtain an adequate estimate
of the objective function value, the heuristic is run 30 times for each set of local search parameter
values for each instance. The algorithm runs for NP = 30000 feasible construction iterations on
each run.

23

https://www.mech.kuleuven.be/en/cib/drbp/mainpage#section-8

10300+
2 11500 T =
- T < 102501
> 11000 < 10200 1
g 105001 g_ 10150+
=
10100+
10000+ : , ‘
" T 18, T
%3] 1 P T
E é 141
g g
: T T| : = =
s = F O O
‘ ‘ ‘ ‘ ‘ 10+ ‘ ‘ ‘ ‘ ‘
0.025 0.05 0.1 0.15 0.2 5 10 50 100 500
g A
(a) Parameter o on instance I7 (b) Parameter on X instance I17

Figure 3: Influence of local search parameters A and o on instance I17

Both the resulting mean value of the objective values and the runtimes are considered in the choice
of these parameters. Generally, it is found that values that increase the runtime also improve the
quality of the solutions. Choosing a larger neighborhood coefficient ¢ leads to better solutions on
one hand because a larger part of the solution space is explored. On the other hand, choosing a
larger neighborhood results in longer runtimes because there are more infeasible solutions found
and discarded. Choosing to re-sample a larger number |R¢| of variables leads to better solutions
and a longer runtime as well. Similarly, when more variables are re-sampled, there is a higher
chance to encounter infeasible solutions, with the trade-off of exploring more of the solution space.
Choosing smaller values for A or 7™ leads to better results and slightly higher runtimes in some
instances. Lower values for these parameters result in a slower temperature change, which helps to
escape local minima. The runtime likely increases in some instances due to the fact that at lower
temperatures, the algorithm is near local minima and no uphill moves are allowed often. These
instances may have a small number of feasible solutions near the local optima, which prolongs the
search. In some cases, the decrease in objective value is not significant compared to the increase
in runtime. For example, Figure [3| shows the influence of the A and o parameters for instance I;7.
It is clear that the objective does not improve by much for ¢ > 0.15 or for A < 10. This is thus a
good criteria to determine the best parameter values.

From these experiments and with these criteria in mind, it is concluded to set ¢ = 0.125, A = 10,
|R¢| = 10 and 7™ = 0.01. These are the values that gave the best range of objective values in the
shortest times for all of the instances from 7'5%.

6. Performance of the algorithm

In this section, the results for all the instances that are discussed in Section |5| are presented. In
the previous section, the parameters of the Simulated Annealing (SA) algorithm were determined
on a training set of instances. First, the performance of the heuristic on a small set of instances
is discussed. These instance are run several times in order to gain insight on the behavior of the
heuristic. Afterwards, we compare the results of using three different local search methodologies to
find the best construction parameters. Finally, all instances are evaluated.

24

6.1. Behavior of the heuristic

Figure [4] shows the (a) accepted and the (b) improving feasible solutions that are found during an
individual run on instance I1g9. Each dot in this figure represents an objective function value that
corresponds with a feasible solution found by the heuristic during the construction iterations.

The heuristic makes most of its improvements at the start, within the first seconds. Within these
first seconds of runtime, the first feasible solution is found. It can be seen that afterwards the
heuristic accepts solutions with a higher objective function value in order to escape possible local
minima. After a certain point in time, approximately after two seconds, the heuristic is not able to
find better solutions so easily. This is likely due to the presence of an isolated local minima, i.e., a
local minima that is difficult to escape from. However, with the SA procedure the heuristic is able
to escape this local minima to reach a lower objective function value. After approximately 8s, the
heuristic seems to not find any feasible solution at all for some time. It is possible that the feasible
solution space is quite narrow around the incumbent solution. This means that infeasible solutions
are found more often and more construction iterations with different parameters are needed to
find something feasible again. The total runtime of the heuristic on instance I1g is 12.4s, while
the last improvement is found after approximately 7s. This means that a significant portion of
the runtime is devoted to reaching the stopping criterion: 30000 construction iterations that yield
feasible solutions. In other words, the algorithm can sometimes yield good results even when the
required number of construction iterations is lowered.

24500 245007
z < oo]
24000 £ 24000
Cg >
g 23500 .g 23500 A
g E
£ 23000 1 £ 23000
o -
2 =
S 22500 - 3 22500 1
g =
5 S
22000 22000 A L\\
21500 L T T T T T T 21500 L T T T T
0.0 2.5 5.0 7.5 10.0 12.5 0 2 4 6
Runtime (s) Runtime (s)
(a) Accepted solutions (b) Improving solutions

Figure 4: Feasible solutions found by the heuristic

It needs to be noted that the time it takes to find the first feasible solution is dependent on the
instance. In general, in most instances, the heuristic finds a feasible solution within the first second
of runtime. Some instances which are more difficult to solve, such as instances I1g, I33, I35 and
Iy, take a relatively longer time to find the first feasible instance (up to a few seconds). These
instances are characterized by having more stringent constraints, such as a low number of buses
compared to the number of requests, low vehicle capacities, etc. Furthermore, the same instance
may take longer to find feasible solutions on one run compared to another. The time it takes to
find feasible solutions is also determined by the stream of random numbers.

Instances Ivg, 129, I24, 125, Iog and I3¢ are run 100 times to observe the different objective function

25

values that the heuristic produces when different streams of random numbers are utilized. Figure
shows a box-plot of the results that are obtained from the 100 runs. The gap, with respect to
the lowest value that is observed, is reported rather than the absolute objective function value in
order to compare the results of the different instances directly. Although the lowest values are not
obtained often, the algorithm still guarantees solutions of good quality. For the smaller instances,
solutions with gaps of 1.5% to 3.5% are observed the most. For the largest instances this goes
up to the 3.5%-5% range. Smaller instances, i.e., instances with fewer decision variables seem to
perform relatively better. This is expected since a smaller portion of the solution space of these
instances can be explored with the same number of feasible construction iterations. Increasing
the number of feasible constructions iterations for the stopping criterion can improve the overall
quality of the solutions, albeit at the cost of longer runtimes. The objective function values are also
quite consistent, with a relative standard deviation of 0.02 or less for all instances. Furthermore,
finding lower objective function values generally does not require a longer runtime. The runtime
seems to be independent from the objective function value. This means that a single better quality
solution is obtained when the stream of random numbers is favorable and not necessarily when
more feasible construction cycles are performed. More construction cycles, however, may improve
the consistency of finding good quality solutions.

__"TTTT

e

o

=N
1

0.04 1

0.02 1

Gap w.r.t. minimum value

0.00{ —— -

Ig Iy 1oy Ips Ipg I3

Figure 5: Box-plot of obtained solutions after 100 heuristic runs

6.2. Local search methodologies

Construction parameters guide the construction of a solution. Different configurations of these
parameters lead to different, and often better, solutions. Therefore, as previously stated, finding
the best construction parameters is essential. The best values for these parameters are found with
the use of local search, namely with Simulated Annealing (SA). The question arises whether or
not the use of local search techniques is needed to obtain better quality results. We conduct the
following experiments to justify the use of SA. We choose instance I;g for these experiments since its
a mid-size instance that is more difficult to solve, i.e., an instance with more stringent constraints.
The instance is optimized with the SA local search, a Steepest Descent (SD) method and with a
random search method. The SD method works similarly to the SA method, with the difference
being that in SD only downhill moves are allowed, i.e., only solutions with a lower objective function
value are accepted. In the random method, the construction parameters are randomly sampled in
each construction iteration. Instance Ig is optimized with all three methods for 50 runs. All
methods have a stopping criterion of 30000 construction iterations. Figure [6] shows the results as
box-plots.

26

Runtime Runtime Runtime

Instances G

ap LocalSolver Serial Parallel
L -Iis | [-4%, —21%] | 3600 [1.76s,7.14s] [0.75s, 5.825]
Lig - Iy | | [3.81s,323s] [2.45s, 126s]

Table 3: Summary of computational results

26500 1
26000 1

25500 A

< 25000 1 T

24000 i

Objective value (s)
[\
=
ot
(==
(=]

23500 1 é

23000
Simulated Steepest Random
Annealing Decent Search

Figure 6: Box-plot of solutions of I1g obtained by three different local search methodologies

It can be seen that SA is the best performing methodology, followed by SD and then the random
method. Both the median values and the minimum values of SA are lower than all values in both SD
and the random method. Furthermore, the range of values obtained by the SA method is smaller
than both the SD method and the random method, which indicates that there is less variability
in the results. This indicates that SA is an appropriate method for the search of construction
parameters. The reason why SA outperforms SD is likely because SA also allows uphill moves, which
make it possible to escape local minima. Both SD and SA outperform the random methods because,
unlike the random search, both of these methods utilize information of the previous construction
iteration to find better quality solutions.

6.3. Experimental results

The heuristic is used to solve all of the instances that are described in Section [Bl The results are
shown in detail in Table[D.5|in [Appendix D]and summarized in Table[3] For the first 15 instances,
the problem is solved with LocalSolver as well in order to assess the quality of the solutions. These
instances are run for one hour with the commercial optimization solver. This allows us to determine
the gap between the values obtained by our heuristic and the values obtained by LocalSolver. The
first row of Table |3 shows the range of values for the first 15 benchmark instances. The second row
shows the range of values for the remaining larger instances.

The mean runtime of 10 runs is given in Table as well, Table [3| shows a range of runtimes.
The framework of the heuristic allows us to implement it in parallel as well. To do this, each semi-
random greedy construction iteration is executed on a different thread, until a feasible solution is
obtained. Once a feasible solution is found, the candidate and the incumbent solution are evaluated
and the heuristic moves on to the next construction iteration of the local search. This means that
the algorithm is sped up because feasible solutions are found in a shorter time. The runtimes of
the serial and the parallel implementation with 12 threads of the heuristic are given in Table

27

From the detailed results, it can be concluded that the heuristic consistently obtains better results
than LocalSolver. For some instances, the difference can be as large as 21%. The runtimes of
the heuristic are also a fraction of the allowable runtime that is given to LocalSolver. It needs
to be noted, however, that LocalSolver uses 12 threads to solve the mathematical model, while
the serial heuristic only uses one. A comparison between the runtimes of the heuristic that is
implemented in parallel is a fairer comparison. On average, the heuristic delivers solutions with
objective function values that are 12.4% lower compared to the solutions obtained by LocalSolver,
in 0.06% of the runtime. The remaining, larger instances show consistent results within reasonable
runtimes. The instances that are more difficult to solve, such as instance I1g, have a higher runtime
because there are more construction iterations that yield infeasible solutions. This means that
there are more construction iterations needed in total in order to reach the stopping criterion. If
the instance becomes larger as well, i.e., there are more variables, the runtime increases as well.
This is because each construction cycle takes longer to complete. However, this increase in runtime
is not as significant as the previously discussed increase. Furthermore, by comparing the runtimes
between the serial and the parallel implementation we can see that the runtime can be decreased
with a factor of up to 5.11 for some instances. On average, the runtimes decrease by a factor of 2.6.
It is likely possible to further optimize the code to make the parallel implementation more scalable
to the number of threads.

7. Service analysis

A comparison between the demand-responsive feeder service (DRFS) and a traditional feeder service
is previously discussed by |Galarza Montenegro et al. (2021)). It is found that the DRFS performs
significantly better than its traditional counterpart. Since the FSMS is an extension of the DRF'S,
we can expect similar results. Furthermore, in the FSMS fewer buses are needed to serve the same
demand because the buses now return to the start to be reused. Moreover, passengers without a
reservation are guaranteed a maximum waiting time at the mandatory stops. For this reason we
opt not to include a comparison with a traditional service. The influence of the different instance
parameters on the service quality and on the runtime are discussed instead.

Several experiments are conducted in which four instances are solved with the heuristic. Each set
of instances has the same set of parameters except for the parameter in question, which varies from
instance to instance in order to isolate the influence of said parameter. Each set of instances is a
subset of the instances shown in Table The instance parameters that are discussed are: the
number of passengers per hour, the number of buses, the number of mandatory stops, the number
of optional stops per cluster, the bus capacity and the maximum allowable headway at mandatory

stops Df. The results are presented in Table in |Appendix E

We further discuss the influence of the passengers without a reservation on the operation of the
FSMS. The demand for transportation of these passengers is stochastic in nature. Therefore we limit
ourselves to a descriptive analysis. A more in-depth analysis would require much more research,
which we consider outside of the scope of this study.

7.1. Number of passenger requests per hour

Out of all of the instance parameters, the number of passenger requests per hour affects the objective
function value the most. As expected, the difference in departure times and the difference in arrival
times increase the most. When there are more requests and the vehicle fleet remains the same, it
is more difficult to provide a customized service to each passenger, i.e., a service more reminiscent
of a taxi service where passengers picked up or dropped off at their desired times. More requests

28

consequently also leads to higher travel times and walking times because the buses need to drive
longer routes. However, the increase in all metrics diminishes as more passengers are served. After
a certain point, the passengers are more easily serviced in groups, which makes the service more
efficient. The runtime increases exponentially with the number of passengers. This is because
infeasible solutions are produced more often when there are more passenger requests to satisfy.
This increases the total number of construction iterations and thus also the runtime. On top of
this, each construction iteration takes longer as well because the number of possible assignments
increases.

7.2. Number of buses

It is clear that the objective function value decreases when more buses are utilized. The decrease
is linear but seems to be less significant when a larger number of buses is used. All performance
metrics seem to decrease with the use of more buses. However, the most significant decreases are
the difference in arrival times and the difference in departure times. The second most significant
decrease is the walking time. This is expected as more buses allow for a more tailored service for
each passenger; more available buses allow for more customized routes and timetables. The runtime
decreases exponentially with the use of more buses. This is likely due to the fact that it becomes
easier to find feasible solutions and in turn, the heuristic needs less construction iterations to reach
the stopping criterion.

7.3. Number of mandatory stops

The objective function value increases linearly with the number of mandatory stops. Clearly,
the biggest performance metric increase is the travel time of the passengers. This is because the
travel distance to the destination automatically increases when there are more mandatory stops.
The difference in arrival times and the difference in departure times are the second most significant
increases. If the overall travel time of the buses increases, the buses need more time to return to the
first mandatory stop for their next trip and thus have less time to pick up or drop off passengers at
their desired times. The walking time slightly increases as well. This is likely because the algorithm
prioritizes the efficiency of the routes over the bus stop assignment in order to decrease the objective
function value further. The runtime increases exponentially. The longer travel times of the buses
make it more difficult to satisfy the headway constraints and other scheduling constraints, which
leads to more infeasible solutions and thus a longer runtime.

7.4. Number of optional stops per cluster

An increasing number of optional stops per cluster has a small effect on the objective function
value. The objective decreases slightly when more optional stops are used. The decrease diminishes
as more optional stops are utilized. Evidently, the walking of the passengers decreases the most
because passengers have more options for a departure stop. However, the trade-off for the decreased
walking time is an increase in onboard travel time because the route becomes longer in order to
visit more optional stops. On one hand, the longer travel times of the buses lead to an increase
in the difference of arrival times because it becomes more difficult to schedule their arrivals at the
destination. On the other hand, the departure time difference decreases since it becomes easier
to schedule the departure of the buses according to the passengers’ needs because there are more
possibilities for departure stops. There is a slight increase in runtime when more optional stops are
used. This is because each construction iteration takes slightly longer to complete since there are
more possibilities for the passenger-stop assignment and the routing of the buses.

29

7.5. Vehicle capacity

The bus capacity has a smaller influence on the service quality. A larger capacity improves the
objective function value slightly at first. As the capacity increases further, the objective function
worsens slightly again. This can be explained as follows. When there is more capacity available, it
becomes possible to find better solutions because there are more options for assigning passengers to
buses. However, when the capacity continues to increase, the increasing number of options for bus
assignments leads to a higher probability of getting trapped in a local minima during the search.
This, in turn, can result in slightly worse solutions. The walking times increase slightly. This is
because with higher vehicle capacities, passengers are able to be grouped more in order to decrease
the other performance metrics. For the same reason, the arrival times difference increases as well.
The difference in departure times decreases the most when the capacity is higher. Buses with a
low capacity can only pick up a limited number of passengers, which means that passengers are
often not assigned to a bus that has similar departure times compared to their desired departure
time. When the capacity is higher, these assignments are more often possible. The travel times of
the passengers are virtually unaffected, although they decrease very slightly with a higher capacity.
This is likely the trade-off with the increase in walking times. The runtime seems to decrease
slightly when the capacity is higher. The higher capacity makes it easier to find feasible solutions
since the constraints are less tight. This leads to a lower number of construction iterations and
thus to shorter runtimes.

7.6. Maximum headway at mandatory stops Df

The maximum headway at mandatory stops D! has little to no influence on the objectives. When
D! is too low, the difference in arrival times increases because the stricter scheduling constraints
make it more difficult to schedule the arrival of the buses. The other performance metrics decrease
slightly to compensate for this increase. The runtime increases when D is lower because the stricter
scheduling constraints make it more difficult to find feasible solutions.

7.7. Impact of passengers without a reservation

We assume that passengers communicate their needs by making a transportation request. The
quality of service for passengers who do not make a request cannot be measured directly since
we do not know what their demands are. Their demand for transportation is more stochastic in
nature. However, we can indirectly estimate the service quality of these passengers.

The heuristic optimizes the objective function value, which consists of minimizing the onboard
travel time of passengers with a reservation. This, in turn, reduces the travel time of the buses,
which also decreases the onboard travel time of passengers without reservation. Therefore, having
more buses available, i.e., a larger fleet size, indirectly increases the service quality of passengers
without a reservation. Furthermore, when there are less passenger requests per hour, the onboard
travel times of passengers with a reservation decrease as well. This implies that passengers without
a reservation also benefit when there are less requests for transportation, since the bus travel times
will decrease as well.

In the FSMS, bus departures must have a maximum headway Df. This means that a bus cannot
depart more than Df seconds after the previous bus departure at any mandatory stop. However,
departing earlier than Df seconds after the previous bus departure is allowed. This, in turn, imposes
a maximum waiting time for passengers without a reservation who are waiting to board a bus at a
mandatory stop. Therefore, by decreasing the maximum headway Df, we decrease the maximum
waiting time and consequently increase the service quality of passengers without a reservation. As

30

it was stated in the previous section, decreasing Df does not influence the objective function value,
i.e., the service quality of the passengers with a reservation, by much. Only when Df is too low,
the runtime of the heuristic increases significantly.

Furthermore, passengers without a reservation who are waiting for a bus at a mandatory stop that
is closer to the destination are more likely to wait longer for a bus when compared to passengers
waiting in previous mandatory stops. The buses are more likely to be at capacity in the later
mandatory stops. This means that passengers without a reservation might not be able to board
the bus but have to wait for the next departure instead. As a trade-off, these passengers spend less
time onboard the bus, since these mandatory stops are closer to the destination.

8. Conclusion

The feeder service with mandatory stops (FSMS) has been introduced in this paper. The FSMS
works with two types of bus stops: optional stops are only visited when there is demand for trans-
portation, while mandatory stops need to be visited by a bus within a certain time frame. The
FSMS is a semi-flexible demand-responsive transportation service (DRTS) that incorporates pos-
itive characteristics of both traditional transport services (TTS) and fully flexible DRTS. On one
hand, the service has flexibility in selecting which of the clustered optional bus stops are visited,
based on online passenger requests. On the other hand, there is predictability in the mandatory
bus stops. If online requests are not made, it is still possible to catch a bus in a mandatory bus
stop. This will likely improve service quality.

In order to optimize the performance of the FSMS, a new type of metaheuristic framework is de-
veloped, namely the Parameter State Space (PSS) heuristic. In the PSS heuristic, solutions are
constructed in a semi-random greedy manner in each construction iteration of the heuristic. In
each construction iteration, the passenger-stop assignment is determined by making use of the pilot
method framework. Randomized construction parameters create a balance between random and
greedy constructions. This leads to a high variability in the solutions that are generated, which
allows the heuristic to find feasible solutions on more strictly constrained instances. The heuristic
uses local search, more specifically simulated annealing (SA), to find the best parameter values
in the parameter space of the underlying constructive heuristic. The parameters of the SA local
search are fine-tuned to obtain good results for any kind of instance. This approach yields high
quality results in short runtimes for 42 different instances. The first 15 instances are solved with
the commercial optimization solver LocalSolver (LS) with a runtime of one hour. The solutions
obtained with LS are used as benchmarks to assess the quality of the solution. It is found that
the PSS heuristic yields 12.42% better results on average, within a few seconds, when compared
to solutions obtained by LS. The remaining larger instances are typically solved within two minutes.

The influence of different instance parameters on the service quality and the runtime of the opti-
mization of the service are discussed as well. Instance parameters such as passenger density, fleet
size, number of stops, vehicle capacity and maximum allowable headway at the mandatory stops are
considered. When more passengers make a request during the planing horizon, the service quality
worsens as well. This is because passengers are forced to be grouped more, making the service
less tailored to each customer. Following this logic, a larger fleet size improves the service quality.
Using more optional stops also improves the service quality with a small increase in runtime. This
is expected since more optional stops increase the level of flexibility in the service. More mandatory
stops decrease the service quality because the main route becomes larger, making onboard travel
times longer and increasing the time between bus trips. The vehicle capacity and the maximum
headway have a limited influence on the service quality. However, a very small headway can result

31

in large objective values. Therefore, headways larger than 15 minutes are recommended. Obviously
the runtime increases with the size of the instances. However, it can be concluded that the runtime
is influenced the most by how difficult an instance is, i.e., how difficult it is to find feasible solutions.
It is found that the passenger density, followed by the fleet size, have the largest influence on both
the runtime and the service quality.

Further research could focus on optimizing the service in real-time. This will make the problem
considerably more complex because it needs to modify routes and timetables to accommodate
new requests, while still satisfying all constraints and trying to provide the best service. The
heuristic presented in this work can be used as a starting point for the solution method of such a
service. Quantifying how well the FSMS can serve the passengers that do not make a request for
transportation is an interesting next step as well.

Acknowledgments

This project was supported by the FWO (Research Foundation Flanders) project G.0759.19N.

References

Agatz, N., Hewitt, M., and Thomas, B. W. (2021). “make no little plans”: Impactful research to
solve the next generation of transportation problems. Networks, 77(2):269-286.

Alonso-Gonzélez, M. J., Liu, T., Cats, O., Van Oort, N., and Hoogendoorn, S. (2018). The Poten-
tial of Demand-Responsive Transport as a Complement to Public Transport: An Assessment
Framework and an Empirical Evaluation. Transportation Research Record, 2672(8):879-889.

Ansétegui, C., Sellmann, M., and Tierney, K. (2009). A gender-based genetic algorithm for the
automatic configuration of algorithms. In Principles and Practice of Constraint Programming-
CP 2009: 15th International Conference, CP 2009 Lisbon, Portugal, September 20-24, 2009
Proceedings 15, pages 142-157. Springer.

Azizi, N. and Zolfaghari, S. (2004). Adaptive temperature control for simulated annealing: a
comparative study. Computers € Operations Research, 31(14):2439-2451.

Balaprakash, P., Birattari, M., and Stiitzle, T. (2007). Improvement strategies for the f-race algo-
rithm: Sampling design and iterative refinement. In Hybrid Metaheuristics: 4th International
Workshop, HM 2007, Dortmund, Germany, October 8-9, 2007. Proceedings 4, pages 108-122.
Springer.

Barbosa, E. B. and Senne, E. L. F. (2017). A heuristic for optimization of metaheuristics by means
of statistical methods. In ICORES, pages 203-210.

Beirdo, G. and Sarsfield Cabral, J. A. (2007). Understanding attitudes towards public transport
and private car: A qualitative study. Transport Policy, 14(6):478-489.

Birattari, M., Stiitzle, T., Paquete, L., Varrentrapp, K., et al. (2002). A racing algorithm for
configuring metaheuristics. In Gecco, volume 2. Citeseer.

Birattari, M., Yuan, Z., Balaprakash, P., and Stiitzle, T. (2010). F-race and iterated f-race: An
overview. Fxperimental methods for the analysis of optimization algorithms, pages 311-336.

Blandamour, N. (2022). LocalSolver vs Gurobi on the Capacitated Vehicle Routing Problem with
Time Windows (CVRPTW).

32

Braekers, K., Ramaekers, K., and Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State
of the art classification and review. Computers & Industrial Engineering, 99:300-313.

Céceres, L. P. and Stiitzle, T. (2017). Exploring variable neighborhood search for automatic algo-
rithm configuration. Electronic Notes in Discrete Mathematics, 58:167-174.

Chien, S. L., Spasovic, L. N., Elefsiniotis, S. S., and Chhonkar, R. S. (2001). Evaluation of feeder bus
systems with probabilistic time-varying demands and nonadditive time costs. Transportation
research record, 1760(1):47-55.

Ciaffi, F., Cipriani, E., and Petrelli, M. (2012). Feeder Bus Network Design Problem: a New
Metaheuristic Procedure and Real Size Applications. Procedia - Social and Behavioral Sciences,
54:798-807.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12(4):568-581.

Crainic, T. G., Errico, F., Malucelli, F., and Nonato, M. (2012). Designing the master schedule for
demand-adaptive transit systems. Annals of Operations Research, 194(1):151-166.

Crainic, T. G., Malucelli, F., Nonato, M., and Guertin, F. (2005). Meta-heuristics for a class of
demand-responsive transit systems. INFORMS Journal on Computing, 17(1):10-24.

DeLijn (2021). DIAL-A-BUS A SOLUTION FOR YOUR JOURNEY?

Dixit, A., Mishra, A., and Shukla, A. (2019). Vehicle routing problem with time windows using
meta-heuristic algorithms: A survey. In Yadav, N., Yadav, A., Bansal, J. C., Deep, K., and
Kim, J. H., editors, Harmony Search and Nature Inspired Optimization Algorithms, pages
539-546. Springer Singapore.

El-Sherbeny, N. A. (2010). Vehicle routing with time windows: An overview of exact, heuristic and
metaheuristic methods. Journal of King Saud University - Science, 22(3):123-131.

Fu, L. and Liu, Q. (2003). Real-Time Optimization Model for Dynamic Scheduling of Transit
Operations. Transportation Research Record, 1(1857):48-55.

Galarza Montenegro, B. D., Sorensen, K., and Vansteenwegen, P. (2021). A large neighborhood
search algorithm to optimize a demand-responsive feeder service. Transportation Research Part
C: Emerging Technologies, 127:103102.

Galarza Montenegro, B. D., Sorensen, K., and Vansteenwegen, P. (2022). A column generation
algorithm for the demand-responsive feeder service with mandatory and optional, clustered
bus-stops. Networks, 80(3):274-296.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Trans-
actions on systems, man, and cybernetics, 16(1):122-128.

Guo, R., Guan, W., Zhang, W., Meng, F., and Zhang, Z. (2019). Customized bus routing problem
with time window restrictions: model and case study. Transportmetrica A: Transport Science,
15(2):1804-1824.

Handy, S., Weston, L., and Mokhtarian, P. L. (2005). Driving by choice or necessity? Transportation
Research Part A: Policy and Practice, 39:183—-203.

Hine, J. and Mitchell, F. (2001). Better for everyone? Travel experiences and transport exclusion.
Urban Studies, 38(2):319-332.

33

Hutter, F., Stiitzle, T., Leyton-Brown, K., and Hoos, H. H. (2014). Paramils: An automatic
algorithm configuration framework. arXiv e-prints, pages arXiv—1401.

Kim, M. and Schonfeld, P. (2014). Integration of conventional and flexible bus services with timed
transfers. Transportation Research Part B: Methodological, 68(2014):76-97.

Kim, M. E. and Schonfeld, P. (2013). Integrating bus services with mixed fleets. Transportation
Research Part B: Methodological, 55:227-244.

Lakatos, A., Téth, J., and Mandoki, P. (2020). Demand responsive transport service of ‘dead-end
villages’ in interurban traffic. Sustainability, 12(9):Article ID 3820.

Lee, A. and Savelsbergh, M. (2017). An extended demand responsive connector. EURO Journal
on Transportation and Logistics, 6(1):25-50.

Li, X. (2009). Optimal design of demand-responsive feeder transit services. PhD thesis, Texas A&M
University.

Li, X. and Quadrifoglio, L. (2010a). Feeder transit services: Choosing between fixed and demand
responsive policy. Transportation Research Part C: Emerging Technologies, 18(5):770-780.

Li, X. and Quadrifoglio, L. (2010b). Feeder transit services: Choosing between fixed and demand
responsive policy. Transportation Research Part C: Emerging Technologies, 18(5):770-780.

Lin, J. J. and Wong, H. I. (2014). Optimization of a feeder-bus route design by using a multiobjective
programming approach. Transportation Planning and Technology, 37(5):430-449.

Liu, T. and Ceder, A. A. (2015). Analysis of a new public-transport-service concept: Customized
bus in china. Transport Policy, 39:63-76.

Lu, X., Yu, J., Yang, X., Pan, S., and Zou, N. (2015). Flexible feeder transit route design to enhance
service accessibility in urban area. Journal of Advanced Transportation, 50(4):507-521.

Maron, O. and Moore, A. W. (1997). The racing algorithm: Model selection for lazy learners.
Artificial Intelligence Review, 11:193-225.

Martins, C. L. and Pato, M. V. (1998). Search strategies for the feeder bus network design problem.
European Journal of Operational Research, 106:425-440.

Mehran, B., Yang, Y., and Mishra, S. (2020). Analytical models for comparing operational costs
of regular bus and semi-flexible transit services. Public Transport, 12(1):147-169.

Melachrinoudis, E., IThan, A. B., and Min, H. (2007). A dial-a-ride problem for client transportation
in a health-care organization. Computers and Operations Research, 34(3):742-759.

Mistretta, M., Goodwill, J. A., Gregg, R., and DeAnnuntis, C. (2009). Best Practices in Transit Ser-
vice Planning. Final Report No. BD549-38. Technical report, Center for Urban Transportation
Research for the Florida Department of Transportation.

Mohaymany, A. S. and Gholami, A. (2010). Multimodal feeder network design problem: Ant colony
optimization approach. Journal of Transportation Engineering, 136(4):323-331.

Pratelli, A., Lupi, M., Farina, A., and Pratelli, C. (2018). Comparing route deviation bus operation
with respect to dial-a-ride service for a low-demand residential area. DATA ANALYTICS 2018,
page Article ID 151.

34

Qiu, F., Li, W., and Haghani, A. (2015). An exploration of the demand limit for flex-route as
feeder transit services: a case study in Salt Lake City. Public Transport, 7(2):259-276.

Quadrifoglio, L. and Dessouky, M. M. (2004). Mobility allowance shuttle transit (mast) services:
formulation and simulation comparison with conventional fixed route bus services. In Mod-
elling, simulation, and optimization A Proceedings of the 4th IASTED international conference.
Kauai, HI, USA, 17419 August. Calgary: Acta Press, 6pp.

Quadrifoglio, L. and Li, X. (2009). A methodology to derive the critical demand density for de-
signing and operating feeder transit services. Transportation Research Part B: Methodological,
43(10):922-935.

Resende, M. and Ribeiro, C. (2007). An introduction to GRASP. In XXXIX Simpésio Brasileiro
de Pesquisa Operacional, chapter 1, pages 3092—-3227. Fortaleza, Brazil.

Saeidizand, P. (2017). Urban public transport in the 21st century. Report, Advancing Public
transport.

Shrivastava, P. and O’Mahony, M. (2006). A model for development of optimized feeder routes and
coordinated schedules — A genetic algorithms approach. Transport Policy, 13:413-425.

Shrivastava, P. and O’Mahony, M. (2007). Design of Feeder Route Network Using Combined Genetic
Algorithm and Specialized Repair Heuristic. Journal of Public Transportation, 10(2):109-133.

Sun, B., Wei, M., and Zhu, S. (2018). Optimal design of demand-responsive feeder transit services
with passengers’ multiple time windows and satisfaction. Future Internet, 10(3).

Vansteenwegen, P., Melis, L., Aktag, D., Galarza Montenegro, B. D., Veiera, F., and Sérensen, K.
(2022). A survey on demand-responsive public bus systems. Transportation Research Part C:
Emerging Technologies, 137:103573.

Vo8, S., Fink, A., and Duin, C. (2005). Looking ahead with the pilot method. Annals of Operations
Research, 136(1):285-302.

Wang, L., Wirasinghe, S., Kattan, L., and Saidi, S. (2018). Optimization of demand-responsive
transit systems using zonal strategy. International Journal of Urban Sciences, 22(3):366—381.

Wei, M., Liu, T., Sun, B., and Jing, B. (2020). Optimal Integrated Model for Feeder Transit Route
Design and Frequency-Setting Problem with Stop Selection. Journal of Advanced Transporta-
tion, 2020:1-12.

Wilson, N. (1971). Scheduling Algorithms for a Dial-a-ride System. PB 201 808. Massachusetts
Institute of Technology, Urban Systems Laboratory.

Yuan, Z., Montes de Oca, M. A., Birattari, M., and Stiitzle, T. (2012). Continuous optimization
algorithms for tuning real and integer parameters of swarm intelligence algorithms. Swarm
Intelligence, 6:49-75.

Zheng, M., Zhou, R., Liu, S., Liu, F., and Guo, X. (2020). Route Design Model of Multiple Feeder
Bus Service Based on Existing Bus Lines. Journal of Advanced Transportation, 2020.

Zheng, Y., Li, W., and Qiu, F. (2018). A methodology for choosing between route deviation
and point deviation policies for flexible transit services. Journal of Advanced Transportation,
2018:Article ID 6292410.

35

Appendix A. Linearized constraints of the mathematical model

Linear version of constraints ((16)):

dyi — (1 = ypors) M < dp < dyyy + (1 — yppi) M VieS, beB, tel pe Py (A1)

Linear version of constraints (17)):

Ay -1 — (L= ypbes) M < ap < dpy oy + (1 — ypoes) M VbeB, telJ peP (A2)

Linear version of constraints (20)):

2t1+1—;‘;_(1_$btz])M§d§tJSdlsytz_‘_j-;tj"i_(l_xbtz])M Vi€S|F|_1, jES(), beB, teJ

(A.3)
Linear version of constraints :
Dyt <MY au VieO, beB, teT (A4)

peEP les

With M representing sufficiently large numbers.

36

Appendix B. Pseudo-code of the construction algorithm

Algorithm 2: Construction algorithm outline

Determine optimal route BR visiting all stops
Determine travel time 7™ to visit all mandatory stops

1

2

3 Sort passengers p € P in ascending T3™ and Ter

4 Place passengers with a 7' in queue Q?, passengers with T,?EP in queue Q4
5 t;} = start time optimization Vb € B
6
7
8
9

it=20
while Q* not empty and Q4 not empty do

Df, = D'rd

Next bus b = earliest available bus
10 Make route RP visiting all mandatory stops.
11 | Timetable of bus b: do = t§, d; = d;_1 + T(ti—l)i
12 Number of passengers onboard bus b, N = 0
13 T = min T7™, T4 = min T;iep + 1T

peEQ? peQ?

14 if T < T4 and Q? not empty then
15 while Nf < C and @Q?* not empty do
16 s=Best_Stop_a(py, b, t,rl)
17 if s# —1 then
18 Assign p; in Q* to stop s and to bus b on trip ¢
19 Remove p; from Q*
20 Update_route (BR, s, R")
21 Update_timetable (mp_1, p1, D'?, Dea le,t)
22 NP+ +
23 else
24 ‘ Stop adding passengers
25 end
26 end
27 end
28 if T > T4 and Q? not empty then
29 while Q¢ not empty and N} < C do
30 s=Best_Stop_d(po, b, t, T,?f’p, DY)y
31 if s # —1 then
32 Assign passenger ps to s and to bus b on trip ¢
33 Remove po from Q94
34 Update_route (BR, s, R")
35 Update_timetable(s, pa, D4 ped Dgt)
36 NP+ +
37 else
38 Stop adding passengers
39 end
40 end
41 end
42 if bus b is empty then Timetable of bus b: dy = tg +Df di=di1 + T(ti_l)i;
43 else
44 Calculate D and D
45 for all remaing passengers p do
46 Calculate T}, for passenger p
47 for all bus stops s already part of the route do
48 Calculate walking time T3¢ for passenger p to stop s
49 if T3% < r¥ DY and |T5| < ri? D and |T3| < rfD* then
50 Assign passenger p to bus b on trip ¢
51 Modify timetable with T
52 Recalculate D% and Dsf
53 end
54 end
55 end
56 end
57 Add a trip to bus b
58 Update tg and sort buses again
59 it++
60 end

37

Algorithm 3: Function for choosing best departure stop for p; € Q?

1 Function Best_Stop_a(py, b, t, ri):

2 BestCost = oo
3 BestStop = —1
4 for all stops s € S within walking disance of passenger p; do
5 cost=walking time of p; to s
6 if s is not part of the route already then
7 Determine the extra time T%2 it will take to go to s
8 if Te¥2 45 too large to maintain departure time interval constraints then
cost=00 ;
9 else cost=cost+T*t2;
10 end
11 Determine departure time 79 at stop s
12 if 795 makes arrival constraints infeasible or rf, < Rf then
13 ‘ BestCost = oo
14 end
15 if BestCost > cost then
16 BestCost = cost
17 BestStop = s
18 end
19 end
20 if BestCost = co then
21 Adding p; to bus b is infeasible
22 return -1
23 else
24 return BestStop
25 end

Algorithm 4: Function for updating a timetable

1 Function Update_timetable(s, p, D', D°, le)t):

2 DT= TP or T of all passengers boarding or alighting in s
3 M'= median(DT)

4 E' = min (DT)

5 L' = max (DT)

6 if M* > min (Et + D', Lt) then

7 M* = min (Et + D', Lt)

8 | else if M' < max (L' — D° E') then

9 | M'=max (L' — D°, E")

10 end

11 Calculate max difference M* in departure times in mandatory stops
12 | if M* >0 then M'= M'— (D}, — M*);

13 Departure time at stop s is M*®

14 Adjust other departure times accordingly

Algorithm 5: Function for updating a route

1 Function Update_route(BR, s, RP):

if s ¢ R then
Determine closest stop s, € R that is visited before s in BR
Insert s after s in RP

end

(S BN SV V)

38

Algorithm 6: Function for choosing best departure stop for p, € Q4

1 Function Best_Stop_d(ps, b, t, T;,?er, D4)y

BestCost = co

BestStop = —1

for all stops s € S within walking distance of passenger ps do

if s is inserted in R® before the previously inserted stop in the route then

© o N o ok W N

[e e e =
R W N = O

16
17
18
19

20
21
22
23
24
25
26
27

28

29
30
31
32
33
34
35
36
37
38
39

40
41
42

43
44

e

-

end

nd

‘ cost=00
else
cost=walking time of ps to s
Determine time of arrival 725 at s

if 7% > TP — D! then

cost=00

else

if s is not part of the route already then
Determine the extra time T2 it will take to go to s
if T2 s too large to maintain the departure time interval constraints
or rl, < Rf then
cost=00
else
Determine best feasible (T9°P constraints) departure time T9 at s
Determine difference A = 795 — T2 of arrival time and a feasible
departure time
cost=cost+T "2+ A
end
else
Determine latest feasible departure time T at s
if 725 > T or 7“5 < Rf then
cost=o00
else
Determine best feasible (T9°P constraints and departure time interval
constraints) departure time 79 at s
Determine difference A = 79 — T2 of arrival time and a feasible
departure time
cost=cost+T a4 A
end
end
if BestCost > cost then
BestCost = cost
BestStop = s
end

end

f BestCost = oo then

Adding ps to bus b is infeasible

e

e

return -1

Ise

return BestStop

nd

39

Appendix C. Instances of the experiments

Instance | [B| |F| K [S| [P| Df(min) C
n 2 4 5 19 10 20 20
I 3 4 5 19 10 20 20
I3 2 4 5 19 12 20 20
I 3 4 5 19 12 20 20
I5 2 4 5 19 16 20 20
Is 3 4 5 19 16 20 20
I 3 4 5 19 18 20 20
Is 4 4 5 19 18 20 20
Iy 4 4 5 19 20 20 20
Lo 3 5 5 25 10 20 20
I 3 5 5 25 16 20 20
L2 4 5 5 25 20 20 20
L3 3 6 5 31 10 20 20
Ly 4 6 5 31 16 20 20
L5 4 6 5 31 20 20 20
L6 3 4 5 19 20 20 20
L7 3 5 5 25 20 20 20
Iis 5 6 5 31 48 20 20
Lo 6 6 5 31 48 20 20
I 7 6 5 31 48 20 20
Iy 8 6 5 31 48 20 20
I 12 6 8 46 20 20 20
I3 12 6 8 46 48 20 20
Iy 10 5 8 37 90 20 20
Ios 10 6 8 46 90 20 20
I 10 7 8 55 90 20 20
Io7 12 6 8 46 90 20 20
Iog 11 6 5 31 162 20 20
Iog 12 6 5 31 162 20 20
I 12 6 8 46 162 20 20
I3 12 5 8 37 162 20 20
I 12 7 8 55 162 20 20
I3 12 8 8 64 162 20 20
I3 12 6 3 21 162 20 20
I35 12 6 10 56 162 20 20
I3 6 5 8 37 90 20 5
Is7 6 5 8 371 90 20 10
Iss 6 5 8 37 90 20 20
I 6 5 8 371 90 20 30
o 6 5 8 371 90 15 20
Iy 6 5 8 371 90 25 20
Iso 6 5 8 371 90 30 20

Table C.4: List of test instances for the experiments

40

Appendix D. Results of the experiments

‘ Objective function value (s) ‘ Runtime (s)
Heuristic Heuristic Local Gap Gap Local Heuristic Heuristic
Instance . . .
mean min Solver | mean min Solver Parallel Serial
I 4278 4242 4420 | -3.22% -4.03% | 3600 1.93 3.53
I 3762 3760 4055 | -7.22% -7.26% | 3600 0.75 1.76
I3 5491 5414 5993 | -8.38% -9.66% | 3600 2.33 3.71
Iy 4758 4689 5858 | -18.8% -20.0% | 3600 1.48 2.88
I 5597 5597 6951 | -20.0% -20.0% | 3600 5.82 7.14
I 5305 5243 5952 | -11.9% -11.9% | 3600 1.35 3.43
I 6756 6684 8456 | -20.1% -21.0% | 3600 3.04 5.15
I 6643 6384 7829 | -15.2% -18.5% | 3600 0.82 2.28
Iy 7499 7332 8546 | -12.3% -14.2% | 3600 0.80 2.39
I 4597 4597 5079 | -9.51% -9.51% | 3600 0.90 2.04
11 6708 6655 8203 | -18.2% -18.9% | 3600 3.53 4.31
I 9417 9212 10897 | -13.6% -15.5% | 3600 1.59 3.42
I3 5409 5409 5641 | -4.12% -4.12% | 3600 2.20 3.49
Iy 7813 7672 8884 | -12.1% -13.6% | 3600 3.30 4.50
15 10762 10762 12412 | -13.3% -13.3% | 3600 1.90 3.17
1,1y -12.4% -13.4% | 3600 2.12 3.55
I 7958 7817 2.45 3.81
Ii7 10133 10093 7.10 6.14
Iig 23244 22598 63.7 120
I 21843 21543 17.3 37.0
Isg 21092 20641 6.09 13.9
I 20963 20601 2.63 8.93
I 10580 10493 0.61 2.07
1o 20451 19850 1.92 8.47
Ioy 39332 38511 5.08 17.2
Ios 45375 44138 7.46 23.4
Iog 52698 51736 12.5 35.8
Io7 46315 45662 4.50 17.6
Iog 89538 88258 21.8 53.0
Isg 88840 87008 15.3 34.8
I3 87844 86904 17.0 42.3
I3 75270 73346 9.20 33.3
I3 99643 98145 55.3 88.9
I3 112392 110486 126 204
134 90195 87817 14.6 31.1
I35 89018 86742 16.4 42.0
I3 40535 39912 83.8 323
137 40129 39328 52.7 201
Isg 39900 39518 40.9 158
I3 40756 39950 43.7 160
14 40395 39608 83.3 224
In 40166 39567 30.8 153
Iy 40158 39567 29.1 150

Table D.5: Computational results of the experiments on all instances

This table shows the min and mean values of the objective function from 10 runs. The minimum
and mean gaps, i.e., the gap between the values obtained by LocalSolver and the observed values,
are also presented. The runtimes of both the serial and parallel implementation of the heuristic are
shown as well. The 16" row shows the mean values of instances I; to Is.

41

Appendix E. Service analysis

Objective Runtime Travel Walking |T3™ —a,| ‘Tgep — dp)
Inst. | Parameter Value (s) (s) time (s) time (s) (s) (s)
Passengers
per hour
I 5 293 0.61 602 265 72 12
Iss 12 414 1.92 788 359 119 67
Io7 23 507 4.50 921 425 238 128
I3 41 536 17.0 965 474 224 138
Buses
I 5 471 63.7 825 443 207 120
I 6 449 17.3 817 402 177 100
Iy 7 430 6.09 795 415 150 60
Iy 8 429 2.63 793 390 167 53
Mandatory
stops
I3 5 453 9.20 733 473 200 112
I3 6 536 17.0 965 474 224 138
I39 7 606 55.3 1144 482 228 176
I3 8 682 126 1368 495 238 142
Optional stops
per cluster
I3y 3 542 14.6 958 520 186 125
Iag 5 537 15.3 985 478 207 118
I3 8 536 17.0 965 474 224 138
I35 10 535 16.3 951 484 243 116
Bus
capacity
I3 5 443 83.8 741 417 208 158
I37 10 437 52.7 697 450 240 117
Isg 20 439 40.9 695 444 254 104
I3 30 444 44.6 701 444 243 118
‘ D! (min)
Ly 15 440 83.3 690 443 260 104
Isg 20 439 40.9 695 444 254 104
Iy 25 439 35.3 695 444 254 104
Iy 30 439 35.3 695 444 254 104

Table E.6: Results for the service analysis of the FSMS

In this table the objective function value per passenger is shown in column three. The average travel
time and walking time per passenger is given in columns five and six respectively. The average
difference in desired and actual arrival time per passenger and the average difference in desired and
actual departure time per passenger are given in the last two columns. Since each instance is run
10 times, we consider the best observed solution for the objective function value and the service
quality metrics. The runtime in this table is the average runtime of the 10 runs.

42

	Introduction
	Literature Review
	Problem Description
	Description of the feeder service with mandatory stops (FSMS)
	Assumptions
	Mathematical optimization model

	Solution approach
	Commercial solver
	Heuristic
	Main outline of the heuristic
	Construction algorithm of one construction iteration
	Construction parameters
	Local Search for construction parameters

	Experimental set-up
	Instances
	Fine-tuning local search parameters

	Performance of the algorithm
	Behavior of the heuristic
	Local search methodologies
	Experimental results

	Service analysis
	Number of passenger requests per hour
	Number of buses
	Number of mandatory stops
	Number of optional stops per cluster
	Vehicle capacity
	Maximum headway at mandatory stops D^f
	Impact of passengers without a reservation

	Conclusion
	Linearized constraints of the mathematical model
	Pseudo-code of the construction algorithm
	Instances of the experiments
	Results of the experiments
	Service analysis

